mesh

MAC 80211 Integration for
MeshDynamics OpenWRT MD6000

1/]© MeshDynamics 2002-2018. All Rights Reserve d.

mesh

TABLE OF CONTENTS

j R o) ol g0 o (U103 uf o] o IS 8
I R O] o] =T o V= TP 9
2 Yo o o TS 9
10 T Y o 0] Y11 N 9
4 RET EIENCES. .. cirvveeierrreereerteeesessssnssesssssssssssssssssesssnnnns 9
LS 1 21T T N Yo = 10
6 MeSh NETWOIKENG. . eeriiiiiieriiiiiin ittt sssssssee s sssssse s s s ssssse s sssssssa s sssssssassssssssnnsssses 12
R =3 e Yo U T3 ol V10 Yo (S 1S 13
LS o F= 1 g0 \VTE= N gl =T =0 T= 1 o S 14
8.1 GAtEWOIrKS LAQUNA..cccciireeeeerieiiceeisenreeeeeseeeessssseseesssssessssssnsesssssssssssssnssssssssssssssssanssssssssssssssanns 14
SRR TN W =\T 0] g SRR OF= 11 o]l 1= 16
IR I O N WS\ T o] g SR \VA 1 = 16
8.4 UDTQUITY BUITETES . eiiiiiiiccceerreteniicsssenenressssssssssssnnssessssssssssssnnsasssssssssssssansnasssssssssssanns 17
LS T 1 = o 0 25t I N 18
0.1 MacC8B0211 COMPONENTES ccciiiiiiiiiiiiiiiiiiiiiiirisisisisisisisses 18
£ N R o [0 =] = T o o SRS 18
O.L.2 CFQGBO2LL ...ttt bbb bbb bbb a b bRt h bbbt h bt ae bbbt b et ene 19

L N I B 117 o <1 0 12 I S TRRRRRR 19

L R R D | ol V=] oSSR 20
9.2 MAC 80211 AICRITECTUIE aiirteeeiireeeeiireeeeiireeeeterrtenssesstssssessessssssstssssssstsssssssssnsssssssnsssssssnsses 20
9.2.1 TranSMESSHON PATN ...ttt e st e e e et e e e e bt e e e ssaae e s s sbteeeenteesssnaeeas 20
(I (=T =T o X o o] g I o - L ol o [TSRS 23

10 MAC 80211 Frame TOIMATES ..ccceeeeeererrrreeriirreeeriiereeenseeremmsssssesssssssssssssssssssssssssssssssssssnnnns 25
11 MEShAP AFCNITECTUNE cuieicceeeeeeteececcccccnteeeetesessscssssssssssssssssssssssssnssssssssssssssssnnnnns 28
11.1 MeShap COMPONENTS...cciiiiiicirinnrreeteiiiesssssnrteeessisssssssnsrsessssssssssssansessssssssssssansasessssssssssssanssenes 28
11.1.1 oot ST R o W 1 1 v I 0] (=T= o [28
11.1.2 STy T 1= 01 (=R 28
11.1.3 Mesh Heart Beat Processing Hash Table ... 28
11.1.4 MESH NAME HASKN TaABDIE ..ottt et e e st e s e et et e s eareesseraeeesssraeessnaneas 28
11.1.5 Y o=} o o) gl o = 1] T 1= 1 o 1 TSRS 28
11.1.6 Access PoiINt VIAan HasSh TabBHE ..ttt 28
11.1.7 Access Point Indirect VIan HAaSh Tab B e ...ttt 28
11.1.8 PAF@NT HASKN TAB I ..ot ettt ettt et e e e e ettt e e e re s et teteessessssaarteeesesesaseraeeeens 28
11.1.9 DS MAC HASKN A ..ottt et e e ettt e e e s e s e sttt e e s sesa s areteeesesasseraeeeesssessnerees 28
11.2 MeSh INET SEOUENCE...iiiiiiceerttitiisisisensesesssesssssassssesssssssssssssssessssssssssssassssssssssssssssssnssenes 28
12 SO T EWANE AN CR I T C UL Cuuueeeereeeiirieireeerireesereesereeeseseessesessssssssesssssesessssssssssssssesssssssnnnes 28

2]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

110 DEVIECE DI EVEIS ueeiiiiiiiiiiinentttsiisissssassssssssissssssssssessssssssssssssssssssssssssssasssssssssssssssssanssesss 29
112 MACBOZL L. ueiinnninisnsesisisissns 29
G Y oy o 10 2 I PR 30
I A = [0 1= =1 o T [P 30
I T 7 o 1 o T P ROPP 30
R0 T G 11T 5 = o 30
ARCTNN =181 o o3 & Folg =N BRNDICTSTod gl 1 o) o o] o PO 30
L3.1 OVBEVEEWaaueiiiiiiiiiiiiinnreeeiiiisissssnnnsesssssissssssansessssssssssssssssssssssssssssssansessssssssssssansasssssssssssssnnnsasss 30
13.2 Boot time INTTIAlIZAtIONS it sssenseesssssssssssanssssasssssssssssansseses 31
13.2.1 Meshap Data structure INTtTaliZatioNS. ... 31
L2 2 L Lttt h et a ket e Rt h e A en e Rt A ea s Rt A e At Rt A eA s e st A e At Rt R e A bRt b et e Rt b et ene et et e st etenbeneenn 31
12.2.2 Meshap hook For dIVErting PACKETS........ccciiiiiiiceeee ettt eene 31
12.2.3 Meshap RUNEIME CONTRGUIATEON c..ccooiiiiiiceceee ettt s ebe 31
D220 T 7= Tod 1C= ol o PV T B N g o SRR PPP 32
12.3.1 MANAGEMENT PACKETSoouiiiiiiiieet ettt sttt sttt be st b e st ebe b e b 32
12.3.2 CONEEOT PACKETS ...ttt ettt b e bt bt et e et sb b sbeebe et e e nee 32
12.3.3 DATA PACKETS.......oiiieieeee ettt bbbt a e st e b sh e e b e s bt eheeat et et e sbeebesbeeae et enean 32
12.3.4 Packets TO MIP TNEEETACE ...t e 32
12.3.5 Packets Trom mMIP FNEEEITACE ...t et 33
12.4 Packet handling for virtual INterfacesS...... e 33
13 IMCP meSSage NanNdIENg.....iiiiciienrieieiiiiicnnereeesesssessssssnsneessssssssssssansessssssssssssssnsssasssssases 33
I DTSES] o I DT o= Y N 34
13.1 Boot time INTEIalIZatioNS ... ssr s sase s ssanse s 34
13.2 Packet Path handBiNg .iiceeeeeeessiccecsssneeeeeeesssesssssssseesssssesssssansesssssssssssssnsssseses 37
13.2.1 Torna Header HANAENG ..ottt sttt se e e s etessesbesneeseeneensenes 39
13.2.2 MANAGEMENT PACKETESooeeeeecee ettt et e st e e e e tesatesatesaeesreesseaseenseans 39
13.2.3 CONTEEOT PACKETS ...ttt e h ettt st be s ae bt et et et e st e besbeebe et ensenee 39
13.2.4 DATA PACKETES....c.iiciiieeeetee ettt st b e et b e bt b e s b et b st et ebe s e e st e b e st et et seeeebe s 40
13.3 Meshap APIS WIith The MACBO2LL ...eeiiiiieieiiineeeeeeeeececssnnereeeesssessssssnseeeessssssssssssnsseees 40
13.3.1 MEShap_get _DOAIT_TEMP ...ttt st be et b e st be e ebe 40
13.3.2 meshap_get _DOArd_VOITAQgE ...ttt st s ebe 40
13.3.3 (=TS = Vo JE=Y=Y sl =T o F e] o OSSPSR 40
13.3.4 (ST g F= Vo JE=Y=Y ol K=o H e 1 i PSSR 40
13.3.5 meshap_Set _1ed _DEENK ..ottt b e e ebe 40
13.3.6 meshap_set _1ed DIINK _FaST....... et ebe 40
13.3.7 meshap _Set _1ed DI ENK ONCE........ et e e s re e sae e sreenre e 41
13.3.8 meshap_enable reSet _gEeNEIaATON ...t st enes 41
13.3.9 meshap_STrobe reSET _gENEIATONK ...ttt st se s neenes 41

0 IRC JC T I I 11 =1 o F=T o I o [i o] o1 o IS OO OO OO U PSPV 41
13.3.11 MESNAP_SET PO ettt ettt b a et e st et e be s bt sbe s bt ea e et et e besheebesheeae et entenes 41
13.3.12 mMeShap _geT gPS_ ENT 0.t et be e tesreeseeseenaenes 41
13.3.13 mMeShap _SET _gPS_ ENT0 .t sttt s restesreeseeseensenes 41
13.3.14 meshap_process_MOME_Frame........ooiiiiieee ettt bbb bt e e e e 41
13.3.15 meshap_process_data Trame.........o ettt e be s bt 41

3/]© MeshDynamics 2002-2018. All Rights Reserved.

13.3.16 meshap_on_BinK NOTETY .o
13.3.17 meshap_on_net_device create.........rinieiecenenenenn
13.3.18 meshap_on_net_device deStroyinienenenennes
13.3.19 meshap_get sta INTO.....ciiiiiiccee e
13.3.20 meshap_reboot machine ...
13.3.21 torna_hw_id_get _addreSs ...
13.3.22 torna_get _product _OUT_Id.......ccooiiniiniiineneninenceceee e
13.3.23 torna _get _generiC_Bd ...
13.3.24 torna _put_reboot INTO ...
13.3.25 torna_get _reboot_INTO ...
13.4 Meshap hook functions registered with the driver
13.4.1 round_robin_NOOK ..o
13.4.2 probe_request _hOOKcccviiiiciiieieeee e
13.4.3 Fadar _NOOK ..o
13.5 MeShap NETAEV OPS..cciiiiicccrrrnreeeeriiiiccssnenreesesssessssssnseesessssssnnns
13.5.1 (SY= o 01V = U Lo 1 RSP
13.5.2 ASSOCTATE ...ttt sae
13.5.3 AES_ASSOCTATE ... e
13.5.4 (o= w ¢ =73 T FE SRR PSPSN
13.5.5 SCaAN_ACCESS_PORNTES ..ottt
13.5.6 scan_access_pPoINtS_acCtiVe.......nineinieeeseeeee
13.5.7 Scan_accCesS_POINTS_PASSHIVEocvccevieiie et
13.5.8 get_last _beacon _TEME ...
13.5.9 set_mesh_downlink_round_robin_time ...
13.5.10 add_downlink_round_robin_chilld.............
13.5.11 remove_downlink _round_robin_child............nnnnn,
13.5.12 VvIrtual _asSSOCHATE........iececece et
13.5.13 get_duty CYCle_TNTO....ciiieee e
13.5.14 set_rate Ctrl_parametersS.... ...
13.5.15 reset_rate CErl ... s
13.5.16 get_rate Ctrl_INTO ...
13.5.17 set_round_robin_notify hooK.........iininieeenenn,
13.5.18 enable_ds verification _opertions...........eeceecnennen.
13.5.19 dFS _SCAN ..
13.5.20 set_radar NOtiTY _hOOKciiiiinirieee e
G T Ko 1= o 111 T [TS
13.5.22 SEE _MOUE ..ottt ettt enbeeaaesaeas
13.5.23 QT _ESSHU. ittt
13.5.24 SET_ESSHU.iiiieeeee et
13.5.25 get_rts _threshold....... e
13.5.26 set_rts threshold.......... e
13.5.27 get_frag threshold ...
13.5.28 set_frag threshold ...
13.5.29 get_beacon_interval ...
13.5.30 set _beacon_interval ...
13.5.31 get_default_capabilitieS..... e
13.5.32 get_CapabilItheS .
13.5.33 get_SHot_TIME _TYPE .ot
13.5.34 set_SIot_TIME _TYPE ..ot
13.5.35 get_erp_info
13.5.36 set_erp_info
13.5.37 set_beacon_vendor_INFo........iiiciicceeeeeee e,

4]© MeshDynamics 2002-2018. All Rights Reserved.

I I T B = o = o T[] o ISR
13.5.39 AESADEE _WEP ..ottt bbbt bbbt b ettt b bbbttt enn
G O T BT i =1 o TN = OSSP
T N R Y= ==Y oAU | ol Y (=) VRSO
13.5.42 releasSe SECUINTTEY _KEBY ..ttt sttt ettt ettt e s beetaesa e s e besaestesseesaeseensenes
13.5.43 et _SECUNTLY_KEY AT ..ottt b et
13.5.44 SETt_dS_SECUFNTLY KEBY ..ottt sttt et ettt e sbesae st e e et nes
JIC I S KSR o 1= =101 o] 0101 g uf=To [= U =SSOSR
I I S G o 1=) g (=] aLe [T I = ol =SSR
G I Oy o 1= o1 i N - L o= OO ST ORPURRRRR
135048 SET_ DET FATE.. ettt sttt sttt et e et e be s tesbe s et eatene et e testeebesaeeneeneantenes
13.5.49 Qe _rate TaADI O .ttt r e teereereere b enes
135,50 GETE_TEX _POWEK ..ottt ettt ettt ettt b sae bt ettt et e b sa e bt s bt bt ae et et ne bt sh e er e nnenee
R I ST S R =T i o o L0 1= OO OO OO O OO PRUPRUP
13.5.52 get_ChanNNEI _COUNT ..ottt ettt e s be et e ese e b et e sbestesseesaeseensenes
13.5.53 gET _ChANNEI ..ottt ettt et a e b et e st e s besbe et e e sa et et e b e tesreeneeneenaenes
13.5.54 SET_ChANNEI ..o bbbt b bbbttt b bbbt e b bt eb et et eain
13.5.55 gET_PRY _MOAE.....co ottt b bbb bbbt e bttt be bbbttt eaen
R I ST ST G =Yy wl o] 0/ 111 T [T
R I T Y A o 1) o o] =Tz a1 o =T Y/ o1 T
13.5.58 SET_Preamble Y Pe. ...ttt b bt
13.5.59 SET_UEV_TOKEN .ottt bbbt b bbbt b bbbttt e e eaas
13.5.60 ST _ESSHU _TNT 0.t e s e e e s te et e et e e st e staesseesteesseesaesreennes
13.5.61 gET_ACK TEMEOUT ..ottt bbbttt b et ettt e sttt e st eb e beneeaan
13.5.62 SET_ACK TEMEOUT ..ottt b bbbt b et ettt e sttt e st eb et e e eaes
13.5.63 get_reg_domalin_ENTO ...ttt ettt ae e rae s reesns
13.5.64 set_reg_domalin_ENTO ...ttt ettt et teeraesreesns
13.5.65 get_supported_ChanNEIS. ...ttt ettt
13.5.66 GET _NTAE _SSHA ..ottt b bbb bbbt e bbbt st e b bt st et et eaen
R I ST W A=Y=y ol o 1 e (=TS T=T o [P
13.5.68 set_dotlle Category ENTO ...ttt et ae e ses
R I ST G 1o I STy i o Q= T I =T o] = USRS PRR
G I ST 0 B T=) i =T o T o = o= SO
13.5.71 radio_diIagnoSTIC_COMMANGccccceiieiieieeie ettt eeteete s ae s ae e s e e steete e s e sssesteeteesseesseessesanesens
13.5.72 set_probe_request_NOtITY NOOK ... e
U C T C Y= VA g ot - U 117 T SO
R I STy 4 R Yoy o [NV =T Y/ oL
R I S T £ SR o 1) o [NV ot =T Y oL
13.5.76 INTTIAlIZE _MEIXEA _MOUEooioeieieeecece ettt et ae st e e s aestesseeneeneensenes
13.5.77 enable_beaconing _UPHENK ...ttt st ne e e e nes
13.5.78 disable beaconing _UPEENK ...ttt
RGN T A° B Y- o= Uoxt of e o T o e T QU
G T ST -1 I =T T = Vot of o] o TSP
13.6 Gl 802 11 OPS.cccccrrrreeeeriieieesineeeeesesssessssssnseessssssssssssssssssssssssssssssssesssssssssssssnsssssssssssssssssnsseses
13.6.1 ASSOCTATE ...ttt b bbbt b bbb bbbt bbbt a e b et neebe st neene
13.6.2 (o LRSI T To Lol 1= of = SRS
13.6.3 (o T<3 ol 0113 1o OO OO O TSP
13.6.4 send_ManagemMENT_ FraAME ...ttt st sa e et et e tesreeseeseensenes
13.6.5 (STor= 1 g = Lot o =TT ST o 1o] g 1 =
13.6.6 SCAN_ACCESS _POTNTES _ACTEVE.....iiii et ettt st bt sbe et aee s
13.6.7 SCAN_ACCESS_POINTES _PASSTVE .ottt ettt st b et eb et e st e st e be bt sbe s st enee s
13.6.8 set_management_Frame NOOK........ ettt st nsenes

5/]© MeshDynamics 2002-2018. All Rights Reserved.

(ST=3 ol o= T= oo o T Lo 1o]G 54
(1<) o =T o] gl [0 To OO OUURRR 54
[oT<3 ol =153 ol 1= Y- ToTo) o JL o 111U 54
set_mesh_downlink_round_robin_TEME ...t 54
add_downlink_round_robin_ ChEEd........coceeee e 54
remove_downlink _round_robin_Child.......cciii e 54
VEFTUAL _ASSOCTATE.ottt ettt ettt st ettt ea et et e besbesbesaeeae et ensenes 54
(o =3 oo (UL w2 3o =Y 1 0 o SRR 54
SET_rate _CErl_ParamEEerS ...ttt s ettt b e es 54
FESET_FAte CHE L oottt sttt et et et e st e s te st e saeeaeeneensenes 54
GET_rate CEF L _EINTO oottt ettt st b s eae et nes 54
set_round_robin_NOEITY _NOOK ... 54
enable_ds_veriTICationN_OPEIrTEONS. ...ttt st 54
(o b ST =T ox= o [OOSR 55
set_radar_NOTETY NOOK ...t re e ta e na s 55
SET_Probe _reqUEST _NOOK ...ttt re e e s e b e e s reetaeseensenes 55
GO MOUE ...ttt b bbbt b e bt b e et eb e bt e bt s bt e bbb eb e bt eb e bt ene b et enean 55
SO _MOUE ...ttt h et h ettt b et b e bbbt eb e bbbt b e bbbt h bbbt n e bt nenen 55
[0 =2 =11 1 PO SS 55
LY = =11 1 PO SS 55
OET_FES_ThIESNOTA.. ..ottt ettt 55
SET_FES_ThIESNOTA. ..ottt ettt 55
get_Trag ThreShORd e sttt e s e reesreenes 55
SET_Trag_threSNOTdttt 55
0EeT_DEaCON_TNTEIVAND ...ttt 55
SET_DEACON_TNTEIVANL ... e st e et e et e e abe e st e sraesseeses 55
SET_SECUNTTEY ENT Ot s esre e st e e s re et e e steensesraesseesens 55
SETE_SECUNTTEY _KEY ..ottt b bbbttt b et s bt s bt aesb et et eas 56
FEHEASE_SECUNTTEY _KEY oottt ettt 56
JET_SECUNTTY _KEY ATciciiiieiicecece sttt s sre e st e e sae et e e steesaessaesseesens 56
SETE_AS SECUNTTLY _KBY ..ottt et a e s e sbe e st e e beesbeesteensessaenseensens 56
get_default Capab i I T TEES ...ttt nes 56
fo Ty o= Vo= o] I8 I o 1= SO 56
(o =2 RSN Ko ol of 11 (T 0/ o= TSR 56
(SY= RSN Ko ol of Fu (ST 0/ o= U SS 56
Fo T3 o =1 o TN 1 1 SO 56
LY=o =1 o N 1 1 TSRS 56
Set_beacon VENAOK _BNTO ...ttt esra e raeaen 56
[o T3 o= U G o 1170 10 1 SO 56
LS o= U G o 1170 10 1 SO 56
(o L= o a1 o LT = T I USSR 57
LY=o ol o LTRSS T USSR 57
enable_beaconTnNg_UPTENK ...t 57
disable_beaconing_UPTENK ..ttt 57
(o3 fRS10] o] oTo] w(=To [o= ¥ (=TSRSS 57
(o T3 ol o1 = (=T OO OO 57
ST o o R o = o= S 57
GET _FATE TAD IOttt ettt b e st eb et et et e st e besae bt et e e e 57
(o T w10 1= PO ST T SORR 57
7=y iy o G o 1o 1= OO OSSOSO SOOI 57
fo T3 o3 a =T 1o = T o] U1 o 1 S 57
GET _ChANNET ...ttt e e h ettt e st e b e s bt eb e e at e st et e se e besaesbe et eneenes 57
LY=o 1 F= T =] ISR 57

6]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

DO OO,

Y2 o 1= o] 0 VZ2 110 Yo L= 20 TSRS 57
283 SETE_PNY MOttt ettt b bbbt h e bbbt h et be et b e b e b 58
264 et _PreambDIE LY PE. ..o bbb et b et e et bbb 58
1o Y= o] g=T= 111 0] K= w0 1= TSROSO 58
.66 get _reg _dOmMaln_ ENTO.... ettt ettt ettt saeeteereesaennens 58
67 set_reg_domMaiN_ENTO. ...ttt e ettt n 58
68 get_supported_ChannE@IS.........e ettt s 58
.69 set _dotlle CaAtegory ENTO ... ettt et b teeseessennens 58
O B ST=) i o - 1o} =T 01 o = OSSOSO URRRI 58
2T1 SEE_AUTN _NOOK ..ottt ettt ettt s ae et ae et et et e besaeeteeneennenten 58
272 SEE_ASSOC _NOOK ...ttt ettt et sttt ettt e tesbesae sttt ntens 58
273 SEE _ESSHU _INT Ottt e e st e s beebaese e b et e b e stesaeeteeseenseneans 58
B 1=] o = To I Lo o F= L o= WSSOSO 58
75 radio_dTagnOSTIC_COMMANGccooiiiiiiiiireie ettt sttt et e et seesbeeae et et e sesbesaesbeeneennensans 58
AT -TCY o= Uox of o] 1 oo T QPRSI 58
B A A 1= oV [ot of o] o RO 59
TABLE OF FIGURES
1 DITFErent MESH NOUES ...ttt et s re e e beenaesrs 10
2 Generations Of Mesh TeChNOBOgY ... 11
3 Formations OF MESh NETWOFKS...... ettt re ettt 12
4 Mesh network with Root, Relay and STatlioN..........iiniinieneneee e 13
5 Block Diagram: GAateWOrKS LagUNa........ccciieiiiiiiecieiieeeeiieste et stesveeae e eaessesvnene s 15
6 GatewWorks Laguna BOArd ...ttt ste st eaeste s ste e aestesraebe s e ense e 15
7 Block Diagram: GateworKsS CambIEa ...ttt 16
8 Block Diagram: GateWorKsS AVELa........ et 17
O UDTQUIETY BUEBTEES ...ttt ettt sttt s ne et e s teesa e neseeenee e 18
10 mMac80211l arChITECTUINrE OVEIVIEEW....... ettt ettt sttt nas 18
11 Transmission Path OF MAC8BO021L ...t 21
12 Transmission Path of athS5K driVersS.........eeee e 22
13 Reception Path OF QthSK ... 23
14 Reception Path OF MACBO2LL ...ttt sns 24
15MaX80211 Frane@ FOFNAT ...ttt see ettt e s te e st e e vae e s be e s snteesnteesbeeesnseeenseeas 25
16 PS—POLL FFame ...ttt et e sttt e st e e te e s be e e s rae e sate e ebaeessteeessseesnteesseeesnseeenseens 26
17 IMCP PACKET TOFMAT ..ottt ettt teese e e s reensesneenneneas 34
18 MEShAP INET PRASE....ceceeeee ettt sttt e se e b e e re et esneeneenrs 35
19 Config Phase For Meshap INET ... s 36
20Start Phase OF MESNAP ..ottt st et 37

7]© MeshDynamics 2002-2018. All Rights Reserved.

1

mesh

Introduction

MeshDynamics delivers third-generation wireless mesh networking solutions for
high-performance outdoor data, voice, and video networking. Based on
sophisticated dynamic channel-agile networking algorithms, MeshDynamics
MD4000 family of Structured Mesh™ wireless nodes deliver very low-latency and
low-jitter performance, even over multi-hop topologies where many earlier
generation wireless mesh networking products fail.

Software development began in 2001 with United States Defence contracts.
Prototypes were rigorously tested by the United States military through 2003-
2005. Production shipments began in 2005, providing scalable wireless mesh
networking solutions for Defence, Homeland Security, surface and underground
mining.

Today, MeshDynamics products are used worldwide in mining and industrial,
video surveillance, defence, and outdoor sport event.

MeshDynamics Structured Mesh™ multi-radio mesh network MESH Algorithm
provides features which makes it different from other mesh networking
implementations. These features include:-

1. Dynamic RF channel management

2. Dynamic scanning for mobility

3. Structured Mesh™ heartbeat transmission and processing

4. Mesh routing table management

5. Self-forming/Self-healing mesh networking

It also includes security components like Wi-Fi-Protected Access (WPA)
version 1 and 2, IEEE 802.111, FIPS 140-2, IEEE 802.1x which makes the
MeshDynamics Structured Mesh™ a better choice for users across the Defence
and Homeland Security Agencies in US, UK and Canada to provide mission
critical video surveillance and perimeter security.

Currently the mesh algorithm implementation is tightly coupled with the
underlying Atheros drivers and is based on closed sourced HAL implementation.
This architecture is however robust, but to provide more flexibility to the
customers, an approach is needed to make the mesh algorithm independent of

8]/]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

the HAL and the device drivers. With this approach, more options open to
customers to easily choose between the underlying hardware and gain benefits
of open source approach.

1.1 Objective

The objective of this document is to describe the software level changes
which are required to port the existing meshap software to the standard
Linux. This document shall describe the areas in the Linux Kernel, mac80211
and meshap which will require modifications to integrate meshap with
mac80211.

2 Scope

This document describes the details of software level changes required for
the integration of MeshDynamics®" software with mac80211. It also explains the
high level architecture of Mesh Networking and captures the terminology and
definitions of MeshDynamics product line. It describes the complete
architectural modification which is required for integration of mesh dynamics
with mac80211. This document also captures the list of APIs which would be
impacted and would require modification to support the new integration
architecture.

3 Acronyms

IMCP Infrastructure Mesh Control Protocol
AP Access Point
BSS Basic Service Set
CTS Clear To Send
MAC Media Access Control
MLME Media Access Control Sub layer Management Entity
POE Power Over Ethernet
RADIUS Remote Authentication Dial In User Service
RTS Request to Send
Rx Reception
Tx Transmission
SSID Service Set ldentifier
STA Station
4 References

“MD4000 Node Deployment and Trouble Shooting Guide” - MD4000_HWMANUAL.pdf

“Architecture Overview” - MD-OEM-HARDWARE-INTEGRATION-VOL1-4.pdf

http://www.campsmur.cat/files/mac80211 intro.pdf

http://wireless.kernel.org/en/developers/Documentation/mac80211

9]© MeshDynamics 2002-2018. All Rights Reserved.

http://www.campsmur.cat/files/mac80211_intro.pdf
http://wireless.kernel.org/en/developers/Documentation/mac80211

)

mesh

Mesh Nodes

Functionally device in the mesh network can be classified as Root node, Relay
node or Station.

Root Node

For root node the Ethernet connection of mesh node is connected to POE and
POE to a Switch. This connection acts as the uplink for root nodes as shown
in the figure. Root node backhaul is the wired network. For increased
bandwidth all 4 radios in root node can be configured as downlinks radios.

Relay Node

Relays have wireless uplinks to an upstream downlink radio. Downlink radios
act likes Access Points (AP), they send out a beacon. Uplink radios act like
clients, they do not send out a beacon. The difference in the physical setup
of root nodes and relay nodes is the connection from a root node’s POE to a
switch. Whenever either of the physical setups is altered, the nodes must be
rebooted in order to assume their new role. The uplink and downlink radios
form a wireless backhaul path.

Station

Mobile station is a device that connects to AP radio link of the mesh node.
Ex: laptop, mobile phone etc.

Figure 1 Different Mesh Nodes

A wireless radio card in a laptop can inform the presence of downlinks but
not uplinks. Downlinks beacon but uplinks do not. AP radios operate in the
2.4GHz band service 802.11b/g clients. 802.l11la wireless devices may be
serviced by the 5.8GHz downlink. Backhaul radios operate in 5.8GHz band to
avoid interference with the 802.11b/g 2.4GHz AP radio as shown pink in the
figure.

MeshDynamics 3" generation mesh technology surpasses 1St and 2" generation
mesh technology.3™ generation mesh products support up to 4 radios in a
single enclosure. Radio slots 0, 1 house one uplink and one downlink (radio

10]© MeshDynamics 2002-2018. All Rights Reserved

mesh

backhaul) operates on non-interfering channels but iIn the same frequency.
Slot 2 can be used for client (laptops etc.) connectivity, generally a 2.4GHz
AP radio that supports 802.11b, g, b & g modes. Slot 3 can house a 2™
downlink, a 2" AP or a scanning radio for mobile mesh module - that forms
part of the meshed backhaul in dynamic infrastructure/high speed mobile mesh
networks. There are two Ethernet ports on each module for wired connectivity.

Figure 2 Generations of Mesh Technology

First and second generation mesh nodes use only one channel of a freqguency
spectrum across all links of a backhaul during operation (fig:). A node in
the mesh cannot send and receive at the same time since the same frequency is
used fTor both functions. This makes for a very 1inefficient process that
severely affects bandwidth as the number of hops increases.

The third generation mesh nodes uses multiple channels (fig:) simultaneously
within the utilized spectrum in order to ensure minimal bandwidth loss as the
number of hops increases. Typically, the 5GHz spectrum is used for the
backhaul . Since different 5GHz channels are used by adjacent links in the
mesh, there is no interference along the backhaul. This allows each node to
send and receive at the same time, therefore, conserving bandwidth over many
hops.

11]© MeshDynamics 2002-2018. All Rights Reserved.

6

mesh

Mesh Networking

Various mesh nodes explained in previous section forms the mesh network.

Network formation:

Upon boot up, a root node will beacon a default ESSID of “StructuredMesh” on
its downlink and AP radios. When a relay node boots up, it will scan on its
uplink radio. When the uplink radio of a relay node hears the beacon from a
root node, i1t will associate. This same relay node will then start to beacon
the default ESSID of “StructuredMesh” on its downlink and AP radios. Any
scanning relay nodes that hear this beacon will associate, thus growing the
network.

Until a relay node associates to a parent node, it will beacon an ESSID
starting with the words “MESH-INIT” on its downlink and AP radios. This is to
indicate that 1t has no association to the mesh network. If a root node
continually beacons an ESSID of “MESH-INIT-.. ”, this indicates that it is not
physically connected the switch, and is therefore attempting to function as a
relay node.

Figure 3 Formations of Mesh Networks

Joining Criteria and Switching:

The initial child-to-parent link is formed based on the signal strength the
child sees from the parent. After joining, the child node pro-actively
samples neighbour links. The connectivity rate then becomes the main
criteria, and the “global” connectivity rate is given the higher priority.

Link switching decisions for stationary nodes are made every heartbeat
interval. Mobile nodes make switching decisions much more quickly. For a
child node to switch parent nodes, the new ‘best’ parent must provide the
best link qualities for 3 consecutive heartbeats.

12]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

Figure 4 Mesh network with Root, Relay and station

The Persistent Third-Generation Mesh (P3M) technology of the Meshdynamic’s
product lines enables a node or set of nodes to remain functional without the
presence of a wired root node where as When a standard mesh network loses
contact with its root node, all connections within the network are broken.
Clients within the mesh can no longer transfer data to and from other clients
in the same mesh

Product Models

2.4GHz Backhaul Products
MD4220-11xx: 2-Radio module 2.4GHz uplink and downlink Backhaul (BH).

MD4320-111x: 3-Radio module 2.4GHz sectored BH slots 0,1 and 2.4GHz AP
radio in slot 2.

MD4325-11x1: 3-Radio module 2.4GHz BH, Downlink also acts as AP. A
2.4GHz Mobility Scanner in slot3.

MD4424-1111: 4-Radio module 2.4GHz service radios (AP) in all slots.
Use with 4 panel antennas.

13]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

5GHz Backhaul Products
1. MD4250-AAxx: 2-Radio module 5GHz uplink and downlink Backhaul (BH).

2. MD4350-AAlx: 3-Radio module 5GHz BH and 2.4GHz AP radio in slot 2. AP
modes may be b, g, or b & g.

3. MD4452-AAIA: 4-Radio module 5GHz BH and 2.4GHz AP radio. Second
sectored 5.8GHz downlink in slot 3.

4, MD4454-AAAA: 4-Radio module 5GHz with radios as downlinks. Intended as
root with four 90 deg panels.

5. MD4458-AAl1l1: 4-Radio module 5GHz BH and two 2.4GHz AP radios in slots
2, 3 for sectored service.

6. MD4455-AAI1A: 4-Radio module 5GHz BH and 2.4GHz AP radio in slot 2. 5GHz
mobility scanner in slot 3.

8 Hardware Boards
MeshDynamics has provided different kind of hardware boards where each has

different number of wireless cards and different processors as described
below.

8.1 Gateworks Laguna
Gateworks Laguna GW2388-4 is designed for a wide range of outdoor
applications such as WISP customer premise equipment, Mesh repeaters, WiMAX
pico base stations, 3G-routers, wireless point to multipoint bridges and 3G
to Wi-Fi routers and gateways.

14]© MeshDynamics 2002-2018. All Rights Reserved.

Figure 5 Block Diagram: Gateworks Laguna

As shown 1in Figure 5 Laguna GW2388-4 board features the Cavium® ECONA™
CNS3420 Dual Core ARM11 SoC processor operating at 600MHz, 256Mbytes of
DDRI11-400 DRAM, 16Mbytes of System Flash, 4Mbytes of Backup and Restore
Flash, and two Gigabit Ethernet ports. The board includes four high-power
Type 111 Mini-PCl sockets capable of supporting any combination of 802.1l1labgn
radios, WiIMAX radios, and other Mini-PCl peripherals. MeshDynamics end
product with Laguna GW2388-4 as shown in

Figure 6

Figure 6 Gateworks Laguna Board

15/]© MeshDynamics 2002-2018. All Rights Reserved.

8.2

8.3

Gateworks Cambria
Gateworks Cambria GW2358-4 is designed for enterprise and residential network
applications.

Figure 7 Block Diagram: Gateworks Cambria

As shown 1iIn Figure 7 this board consists of an Intel® [IXP435 XScale®
operating at 667MHz, 128Mbytes of DDRII-400 DRAM, and 32Mbytes of Flash.
Peripherals include four Type 1I11 Mini-PCl sockets, two 10/100 Base-TX
Ethernet ports with IEC-6100-4 ESD and EFT protection, two USB Host ports,
and Compact Flash socket. Additional features include digital 1/0, serial
EEPROM, and real time clock with battery backup, system monitor to track
operating temperature and input voltage, RS232 serial port for management and
debug, and watchdog timer. The GW2358 also supports GPS and RS485 serial port
as ordering options. Power 1is applied through a dedicated connector or
through either Ethernet connector with the unused signal pairs in a passive
power over Ethernet architecture.

Gateworks Avila

Gateworks Alvia cw2348-2 is designed for enterprise and residential applications.

16]© MeshDynamics 2002-2018. All Rights Reserved.

Figure 8 Block Diagram: Gateworks Avila

As shown in Figure 8 this network processor consists of an Intel® [1XP420
XScale® operating at 266MHz, 32Mbytes of SDRAM, and 8Mbytes of Flash.
Peripherals include two Type 111 Mini-PCl sockets and two 10/100 Base-TX
Ethernet ports with 1EC-6100-4 ESD and EFT protection. Additional features
includes digital 1/0, serial EEPROM, system monitor to track operating
temperature and input voltage, RS-232 serial port for management and debug,
and watchdog timer. Power is applied through a dedicated power connector or
through any Ethernet connector with the unused signal pairs iIn a passive
power over Ethernet architecture.

8.4 Ubiquity Bullets

The Bullet M2 HP is a revolutionary outdoor radio device that features a signal strength LED
meter for antenna alignment, a low-loss integrated N-type RF connector, and a strong and
robust weatherproof design. This inline wireless access point can instantly transform any

antenna into a carrier class radio system. This unique inline access point is
perfect for all your 802.11b/g WLAN applications.

17]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

Figure 9 Ubiquity Bullets

This consists of an Atheros MIPS 4KC operating at 180MHz, 16Mbytes of SDRAM,
4AMbytes of Flash and 10/100 Base-TX Ethernet interface.

9 Mac80211

Mac80211 is a subsystem to the Linux kernel, implements shared code for
SoftMAC wireless devices. SoftMAC devices allow for a finer control of the
hardware, allowing for 802.11 frame management to be done in software for
them, for both parsing and generation of 802.11 wireless frames. The

Figure 10shows mac80211 architecture overview.

Figure 10 mac80211 architecture overview

9.1 Mac80211 components

9.1.1 Hostapd
Hostapd is a user space daemon for access point and authentication servers.
It implements IEEE 802.11 AP management, IEEE 802.1X/WPA/WPA2/EAP
Authenticators, RADIUS client, EAP server and RADIUS authenticator server.

18] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

The hostapd also handles generation of beacons and other wireless packets, as
well as wpa-psk, wpa2 etc encryptions. The current version supports Linux
(Host AP, madwifi, mac80211-based drivers) and FreeBSD (net80211).

Hostapd also includes following functions,
1. Implements (almost) the entire AP MLME
2. Works with mac80211 through nl180211
3. Requires working radio tap packet injection
4. Requires many of the nl80211 callbacks

5. Requires ‘cooked ’ monitor interfaces

9.1.2 cfg80211
cfg80211 is the Linux 802.11 configuration API. cfg80211 replaces Wireless-
Extensions. nl80211 is used to configure a cfg80211 device and is used for
kernel <-> user space communication. The functions of cfg80211 are as
follows:

1. drivers register a struct wiphy with cfg80211, this includes hardware
capabilities like

e Bands and channels
e Bitrates per band
e HT capabilities
e Supported interface modes.
These parameters need to be set before registering netdevs,

2. The netdev ieee80211 ptr links to registered wiphy, cfg80211 will also
update the list of registered channels and (optionally) notify driver.

3. Create/remove the virtual interfaces

4. Change type of virtual interfaces (provides wext handler)

5. Change ‘monitor flags’

6. Keeps track of interfaces associated with wireless device

7. Will set all interfaces down on rfkill

8. Allow multiple interfaces combining e.g. WDS and AP for wireless backhaul

9. Supports multiple SSID’s, channel specification, IE insertion

9.1.3 mac80211

mac80211 implements the cfg80211 call backs for SoftMAC devices, mac80211
then depends on cfg80211 for both registration to the networking subsystem

19]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

and for configuration. Configuration is handled by cfg80211 both through
nl80211 and wireless extensions.

In mac80211 the MLME is done in the kernel for station mode (STA) and in
user space for AP mode (hostapd).

Supported features:

e |IEEE 802.1l1abgn

e |IEEE 802.1l1abgn

e Integration of work for the emerging 802.11s standard
o Different types of interfaces

e Vendor specific rate support

e QOS

e All mac80211 drivers get monitor mode support

9.1.4 Drivers
Drivers such as ath5k, ath9k are supported with mac80211 framework. In the
transmission path when mac80211 layer has packet to send out, the driver will
send the packet out to the hardware connected to it, and in the reception
path it hands over the incoming packets coming from hardware to the mac80211
layer.

9.2 MAC 80211 architecture

9.2.1 Transmission Path
In the transmission path the kernel hands over the packet to the virtual
interface and then the 80211 header is added, initialization of transmission
time is done, headroom is created for encryption,

20l © MeshDynamics 2002-2018. All Rights Reserved.

Kemel hands the packetto the vrtugl interface

ieeeB021L_subit start mit (ti.):
-Adds the BIZ11 heager.

-nifializes transmission timein dev-3trars_start

ieeeB0211_mit [thg)
-Mzkes headroom for encryption

ieeeB0211 set_gos_header (wme.d):

b

-Sets TID in Wi-Fi header according to
kb priorty

IeeeBI211 th fn.q)

-(btains the proper transmigsion queue.
-Prepares transmission

[fthe packet can nat be transmitted, it is
QUeUed 3 timestamp QUELe entry.

' T

~{Jueues are mainteined per sub-interface, ir
the structure gdatz[4] n
IeeeB1211 sub if date

Calls dry_tx) to pass the frame to the actual
driver for rangmission

i

dr i) (driver-ops.h)

This is the entry paint to the actual driver!
-Jtis celled for zach packet o be transmitted.
Receives struct ieee8 0211 local

-Receives the sk_buff (the cata)

structieezB0211 Jocal:

<This struct contains informiation aboutthe real
hardware, andis created when the interface is first added
(ieee80211._register () in main.c)

~This data structur is crezted from the structure
ieeed211 hw inmacB021Lh

-This datastructure probably alows the haidware diver
to register with macBC211 the proper function fo be
allec by dry .

~Thedriver and mac80211 communicate through this
sTucture.

~ sb_get_queue_mapping 7.k

== ieeeB0211_tx_prepare (fx.:

o=
=)

invoke_ty_ handlers(tr.c:
-nanAP checksifthe date hasto be tobe
buffe-ed

Many other stuff .

struct qdata(ieeeB02 11 ih):

=
—n

-nqLeued
-Max_enqueuzd
-£Wma t521v_ns_vg

Figure 11 Transmission Path of Mac80211

21]© MeshDynamics 2002-2018. All Rights Reserved.

The below flowchart shows the transmission path of ath5k driver to

hardware.

~The ath5k driver registers the functions to interface with mac80211 in struct

dre_) in maci0211 ¢ ieeeB0211_ops athSk_hw_ops in macB0X11-ops.c. The input of this struct is then loaded
in mac0211 using the function ieeeB0211_alloc_hw{) in main.c of macB0211.

- The function interfacing with drv_te() is athSk_tx{) in macB0211-ops.c

athSk_tx{) in macB0211-ops.c
-Receives the skb to be transmitted.
-Finds the appropriate hw queue for that skb

3

athSk_te_queue() in base.c

-[f the queu is already at its maximum size {max is 50 pkts) it
sends a signal back to macd211 so that this stops his queues
|ie2280211 stop_queue). It also may drop the packet
-Copies the data to be transmitted in the tequeues. struct

athSk_tasklet_tx{) in base.c

-Tasklet that is called when the following interrupts
happen: ARSK_INT_TXOK, ARSK_INT_TXDESL,
ARGK_INT_TXERR, ARSK_INT_TXEOL

3

the

athSk_t_processq() in base.c

athSk_buf represents a single quaued frame (buffer].

ieseB0211 stop_queue()in?

athSk_tu_frame_completed() in base.c
-Check a timestamp here ?

H

ah_setup_tx_descl) in desc.c

leee80211 ty_status() iin mac30211

athSk_tubuf setup() in base.c
-0btains data rate for this transmission

-Prepare for transmission

athSk_hw_setup_mir_ts_desc() in desc.c

WJ

athSk_hw_start_tx_dma(] in dma.c

-Starts a transmission in the hw.

-My understanding is that the hw may already be trying to
transmit other frames that were previgusly submitted.

ARSK_REG_WRITE_0{) in dma.c

-Writes a certain register in the hw, so that the
transmission on a certain queue starts

Figure 12 Transmission Path of ath5k drivers

22]© MeshDynamics 2002-2018. All Rights Reserved.

9.2.2 Reception path

athSk_tasklet_rxin basz.c ath5Sk_receive_frame_ok in base.c
-Receives the interruption that a new 1 | - - - |

frame has been received

athSk_receive_frame in base.c
- ras-=mactime contains the time the first bit
was received in the air

ieeeB0211_rx|) [macB0211 r.c)
-This is the entry point to mac80211

Figure 13 Reception Path of ath5k

The below figure shows the flowchart of reception path from mac80211 to
kernel .

23] © MeshDynamics 2002-2018. All Rights Reserved.

l

ieeeB0211 () [macB02Ll)

-Remaves the radiotap header

Parses (o§ from header.

-Decides if this packet is addressed to this
interface or to another STA in the BSS
-Calls ieeeB0211 prepare_and_rx_handle()

ieeB0211 parse gos|) [x.c):

ieeeB0211 prepare_and_n«_handle()

Receives as input an ieeeB021]_r_data
Lalls the ri handlers

I

struct ieeeB0211 rx_data (ieeeB0211 ih)
struct sk_buff *skb;

struct ieeeB0211_local *local;

struct jeeeB0211 sub if data *sdata;
struct sta_info *sta;

struct ieeeB0211 key *key;

int queue ..

ieeeB0211 x_handlers(ru.c)

-Amang other calls the following functions;
ieeeB0211_r_h_decrypt
ieeeB0211_ri_h_check_maore_data
ieeeB211_r_h_sta_process

ieeeB0211 ri_h_data

jeee80211 pv_h_et

ieeeB0211 rx_h sta_process{) [r.c):

-Updates the sta_info struct that contains
information about this station

i

ieeB0211 e h dataf) (m.q):

Removes the 802.11 header and passes
up the §02.3 frame

ieeeB0211 deliver_skb() (m.c):
-Receives a frame with an Ethernet header

-Dlecides if the frame has to go up to the stack, or
must be reflected back to the wireless medium
(ifwe are 2n AP).

struct sta_info [sta_info.h|:
-Infia about this station, like:
-TX and RY statistics

-P5 buffers if we are an AP
struct ieeed0211 sta stz

netif_receive_skb() [x.c):

e

-Delivers the skb to the local stack (kernel)

dev_gueue_xmit]) [nc):

i

-Resends the skb to the wireless medium

Figure 14 Reception Path of mac80211

24| © MeshDynamics 2002-2018. All Rights Reserved.

10

mesh

MAC 80211 Frame formats
IEEE 802.11 is set of specification for implementation of wireless local area
network (WLAN). The main components of wire local area network are media
access control (MAC) and physical layer (PHY). MAC is set of rules to
determine how to access the medium and send the data, but the details of
transmission and reception are left to the PHY. This operates on 2.4, 3.6, 5
and 6 Ghz frequency band.

Frame format

Following diagram represent the generic 802.11 MAC frame. All type of frames
do not use all address fields. Contents of address field may change
depending on type of frame being transmitted. Fields are transmitted from
left to right.

Frame | Durati address Seq Address Frame FCS
fontro onid |1 address 2 address 3 ctrl 4 body

protoc Sub- To DS From More Retr Powe | More m

ol type | type DS frag |y r data | ©d r

mgmt frame

Figure 15Max80211 Frane Fornat

Frame control

Frame control sub field is of 2 bytes. Following are the components of frame
component subfield.

Protocol version

This field is of 2 bits representing the protocol version of 802.11. For
802.11, the value of protocol version is zero.

Type and subtype

Type and subtype field identify the type of frame used. For example type can
be management and subtype can be association etc.

To DS and from DS

To DS = 1 indicates frame is for distribution system and from DS = 1
represent frame is received from the distribution system. Whereas To DS = O
and From DS = O indicates frame is destined to/received from within the BSS.

25]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

More fragment bit

IT frame is fragmented then more fragment bit is set to 1. Large frame which
iIs beyond the scope of one frame can set the more fragment bit to 1, whereas
last frame set more fragment bit to O i.e. No more fragmented frame of large
frame.

Retry bit

Some frame requires retransmission. For this if frame is retransmitted retry
bit is set to 1.

Power management bit

This field is of one bit. When this field is set to 1 means station is in
power save mode whereas 0 means station is active. Access point cannot set
power management bit. So this bit always remains 0 for access point.

More data bit

More data bit is used to buffer the frame received from the distribution
system. An access point sets this bit to 1 to indicate that at least one
frame is available and is for the sleeping station.

Protected frame bit

IT the frame is protected by the link layer then protected frame bit is set
to 1. When frame is decrypted this bit is toggled.

Order bit

When strict ordering method is employed this bit is set to 1.
Duration/ID field

Duration/ID has basically three types of usages

PS-POLL frame

LSB 0 1
AID(1-2007)
MSB

Figure 16 PS-POLL Frame

Mobile station may sleep in order to save the battery power. In PS-POLL frame
both bits 14 and 15 are set to 1. Sleeping station must wake up periodically
in order to retrieve the buffered frame from AP. For this station sends PS-
POLL frame to AP. AID is also inserted in PS-POLL frame to indicate which BSS
it belongs to.

Address fTield

An 802.11 frame may contain four address fields. All addresses are 48 bit
long. Address 1 is used for the receiver; an address 2 is used for the
transmitter and address 3 field for filtering by the receiver. IT first bit
of these addresses is 1 this means address is unicast address. If first bit

26] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

is 1 this means address represents a group of station called multicast
address. If all bits are set to 1 then frame is broadcast address.

These addresses are used for the following purposes.
Destination address

This address represents the address of the final recipient. If this matches
with the host address then frame will be handover to higher protocol layer
for processing.

Source address

This address identifies the originator of the frame. Only single host can be
the originator of the frame so this address will be the unicast address which
always starts from O.

Receilver address

This 48 bit address indicates that which station will process the frame.
Receiver address may or may not be the destination address.

Transmission address

This 48 bit address i1dentifies that which station has transmitted the frame
on wireless medium. Transmission address may or may not be the source
address.

Basic service set ID (BSSID)

BSSID address is the MAC address used by the wireless interface in the access
point. IFf AP is receiving the frame then its receiver address will be the MAC
address of AP.

Case 1: If from DS = 0 and To DS = O
address 1: Destination
address 2: Source
address 3: BSSID
Case 2: IT from DS = 0 and To DS =1
address 1: BSSID
address 2: Source
address 3: Destination
Case 3: If from DS = 1 and To DS = O
address 1: Destination
address 2: BSSID
address 3: Source
Case 4: IT from DS = 1 and To DS =1
address 1: Receiver

address 2: Transmitter

27]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

address 3: Destination
address 4: Source
Sequence control

This 16 bit field is used for defragmentation and discarding the duplicate
frame. It consists of 4 bit fragment number and 12 bit sequence number.

Fragment

number Sequence number

Frame Body

This is also called data field. 802.11 can transmit maximum of 2304
bytes of higher layer data.

Frame check sequence (FCS)

When frame is sent over wireless medium, before transmission FCS is
calculated. At the receiver end, FCS is calculated from the frame received
and compared with the FCS of the frame received. If both are same frame is
not corrupted otherwise corrupted.

11 Meshap Architecture

el el
N =
] H

|_\

el
(RN
1]
PR RPRRPRRPRRRRPR
]
o

©

R R R
(B B AN
] 1 1

=
=
N

12

A WODNPE

0 N O

Meshap components
Access Point Thread
Mesh Table
Mesh Heart Beat Processing Hash Table
Mesh name Hash Table
Station Hash Table
Access Point Vlan Hash Table
Access Point Indirect Vlan Hash Table
Parent Hash Table
DS MAC Hash Table

Mesh Init Sequence

Software Architecture

The MeshDynamics Mac80211 based Mesh Networking architecture defines a design
approach where the proprietary Mesh Networking algorithm provided by
MeshDynamics will be Tfully integrated with the Linux based MAC80211

architecture.

28] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

It provides the complete abstraction of the proprietary Mesh Networking
algorithm (meshap) from the underlying device drivers and therefore the
dependency of meshap on any of the underlying device drivers will be removed.

IT the underlying device driver changes, the meshap continues to provide
services without any impact and no modification is required in the code. The
goal is to support all the Ffunctionalities provided by the existing
MeshDynamics algorithm and there shall be no interface level impact on the
existing meshap algorithm.

The block diagram of the Mesh Dynamics®™ Mac 80211 based Mesh
Networking architecture is above, Fig 17.

The Error! Reference source not found. describes the existing Linux based
Mac80211 architecture which s iIntegrated with the Meshap. The diagram shows
the packet flow between the blocks via MAC80211 to the Meshap.

11.1 Device Drivers
It is the underlying WLAN device drivers like atheros 5k, atheros 9k in the
linux kernel. The packets received by the atheros devices are processed by
the device driver layer and handed over to MAC80211 block. These are the
standard drivers of linux and are not impacted with the integration of meshap
and MAC80211..

11.2 MAC80211
The mac80211 is a framework which driver developers can use to write drivers

for SoftMAC wireless devices. mac80211 implements the cfg80211 callbacks for
SoTtMAC devices. Device drivers call the routines of MAC80211 to hand the
received packet. The Mac80211 block processes this packet and at one point
calls the Rx hook which will redirect the data and management frames to the
meshap block for processing. The response from meshap iIs passed back to
mac80211 by calling the Tx hook function. For management frames, one copy is

29] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

sent to meshap and the other copy is sent to hostapd. The response for these
management frames is only sent back from hostapd while meshap only processes
the frames and updates 1its database. For more details on MAC80211
architecture, refer to section 9.

11.3 cfg80211
cfg80211 is the Linux 802.11 configuration API. The netlink "nl80211" driver
is used to configure a cfg80211 device and is used for communication between
kernel and userspace. This layer is responsible to configure MAC80211 based
on callbacks from hostapd in userspace. There is no change in this block with
integration of meshap with mac80211.

11.4 Hostapd
Hostapd is a user space daemon for access point and authentication servers.
It configures the wireless interfaces (using netlink sockets) for MAC80211
based system. It implements IEEE 802.11 access point management, IEEE
802 .1X/WPA/WPA2/EAP Authenticators, RADIUS client, EAP server, and RADIUS
authentication server It depends on hostapd to handle authenticating
clients, setting encryption keys, establishing key rotation policy, and other
aspects of the wireless infrastructure. Hostapd is run on the interfaces
configured as AP (wlan2) and on the downlink interface (wlanQ0). Hostapd
handles the management frames and sends the response for the management
frames i1t receives.

11.5 Configd

It Is a user space daemon used by Meshap to process configuration requests
from Meshap iIn the user space. The configd daemon is used for the boot-time
as well as the runtime configuration of meshap. When meshap boots up, configd
daemon configures and start the meshap. On receiving a configuration change
parameter configd initiates 10CTL command to configure that parameter to
meshap and also applies this change to mac80211 via hostapd by modifying the
hostapd.conf configuration file and issuing a SIGHUP to the hostapd daemon.

11.6 Meshap
The meshap block is the complete mesh networking core algorithm provided by

Mesh Dynamics.

13 Functional Description

13.1 Overview
The mesh nodes have four interfaces whose usage is configuration dependent
i.e. they can act as an Uplink, Downlink, Access point or scanning
interfaces. The generally accepted usage is - wlanO (Downlink interface),
wlanl (Uplink interface), wlan2 (Access Point Interface) and wlan3 (
Scanning interface). The Downlink Interface and the Access point interfaces
runs hostapd daemon over themselves. Hostapd running on them will be
responsible to configure the underlying mac80211 block and the device
drivers.

30]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

The Uplink and the scanning interface will not run hostapd and therefore will
be configured by the "iwconfig®" user space utility.

Whenever a management frame is received by the mac80211 block, a copy of this
frame is sent to hostapd as well as to the meshap using hook functions. On
receiving this frame, both hostapd and meshap will process the frame. The
hostapd updates its data structures and also configures the mac80211 block
and sends the response (if any). Meshap only updates its data structure and
does not send any response at all.

The control frames are handled by the device drivers only. They never reach
meshap or hostapd.

The data frames are only processed by the meshap.

13.2 Boot time Initializations

13.2.1 Meshap Data structure Initializations

At the start-up, the MAC80211 and the device drivers are loaded. The
initialization of meshap is not done in kernel space. It is delayed until the
system is completely up and is triggered from the user space. This is
required to have a controlled way to configure both meshap and hostapd,
mac80211 & the device drivers. In order to configure the mac80211 block,
hostapd daemon is required. It uses the hostapd.conf configuration file with
which 1t can configure the devices and mac80211 block.

The hostapd daemon is run on the access point interface (generally wlan2) and
the downlink interface (generally wlan0) on the mesh nodes. The other two
interfaces, 1.e. the uplink (generally wlanl) and scanning interface (wlan3)
will not run hostapd.conf. These two interfaces are configured using the
‘iwconfig’ user space too.

12.2.2 Meshap hook for diverting packets

The purpose of the hook functions in the RX and TX path is to serve the
packet redirection to and from the meshap. Until the hook functions are not
registered by the meshap, the MAC80211 block will not handle any packet which
is received. It keeps dropping those packets. Once Meshap registers the
hooks, meshap can immediately start handling the packets and process them
accordingly. The hook function acts as a bridge that takes care of
translating the packets in the format as needed by the existing Meshap block,
thus keeping meshap abstracted after its integration with MAC80211. When a
packet is to be handed over to MAC80211 by meshap, the hook function converts
the packet in the format which MAC80211 can process.

12.2.3 Meshap Runtime configuration
The interface configurations can change at run time through the Network
management Viewer. These configuration change messages are received by meshap
as an IMCP packet. The following steps are followed on receiving a
configuration change message:

1. Meshap receives the “IMCP SNIP PACKET TYPE CONFIGURATION INFO”
configuration IMCP message and sends the configuration parameters buffer to
configd

2. Configd updates the meshap.conf file

31]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

3. Configd creates the hostapd.conf file based upon the interface"s
usage type.

4, Configd sends 1ioctl to meshap. Meshap configures 1its data
structures.

5. Configd signals the running hostapd daemons with a SIGHUP. On

receiving the SIGHUP signal, hostapd reloads its configuration.

6. Configd configures the wuplink and scanning interfaces with
iwconfig utility.

12.3 Packet Handling

12.3.1 Management Packets
Management packets are processed by hostapd/mac80211 as well as by meshap.
Meshap will receive a copy of the management frame. The response for the
management frame will be sent by hostapd/mac80211. The responses from meshap
will be blocked.

12.3.2 Control Packets
Control packets will be handled by mac80211. Meshap will not process any of
these frames.

12.3.3 Data Packets
Data Packets are processed only by meshap. Meshap transmits the packet out
using the mac80211 hooks. Mac80211 will take care of sending the packets out
of the appropriate interface and the corresponding driver.

12.3.4 Packets to mip interface
The Meshap IP device (MIP) is a virtual IP interface which is initialized to
handle L3 packets like ARP Packets and IP packets. The IMCP packets which are
handled by the configd daemon are also received on the mip interface on which
the configd daemon binds the socket to receive packets. A MIP interface
processes data packets.

Mip device creation:

On start-up, in the Init phase of meshap initialization, when the
INIT_MESH CMD ioctl is invoked, the meshap_ ip _device initialize routine is
invoked which creates and registers an interface with a name mipO. The mip
interface iIs associated with its mip_priv_data private data structure. The
_mip_open routine initializes the IFF_RUNNING flag and the mip interface is
ready to process packets.

A packet is sent to mip interface by the routine al_send packet up_ stack.
This function passes the packet received via interface al_net_if to the 0S
networking stack using the following rules with the given order:

1. For IP packets (type 0x800), if the destination MAC address i1s broadcast
or multicast, the packet is sent up the 0OS networking stack via the MIP
interface.

2. For IP packets (type 0x800), if the destination IP address matches the IP
address of the MIP interface, the packet is sent up the 0S networking stack
via the MIP interface.

32]© MeshDynamics 2002-2018. All Rights Reserved.

12.3.

mesh

3. For ARP packets (type 0x806), if the target IP address matches the IP
address of the MIP interface, the packet is sent up the O0S networking
stack via the MIP interface.

4. The packet is sent up the OS networking stack via the received network
interface in all other cases

5 Packets from mip interface

When the network stack transmits a packet via the MIP interface it calls the
on_before_transmit routine which en-queues the packet into the fifo queue.
The access points thread de-queue®s packets from this queue and further
processes the packet to make decision where to send the packet i1.e. on WM or
DS.

The configd daemon sends responses of IMCP packets via the mip
interface

12.4 Packet handling for virtual interfaces

13

Virtual operation modes are used when one physical radio interface is used as
two or more logical radio interfaces. The driver shall process calls to this
function only if the device type has been set to MESHAP_DEV _MODE MIXED in a
call to the set device type function.

On reception of a frame, meshap checks if 1t is running in a mixed mode by
checking if the device mode is set to ATHEROS DEV_MODE MIXED. If yes, then
each frame is handled based on the sub-type. For example, in case of
management frames, if the frame sub-type is PROBE REQ, the meshap is assumed
as a master mode and handled by atheros_sta fsm_process_mgmt_frame. Similarly
if a frame sub-type is ASSOC RESP or REASSOC RESP, meshap is assumed to be
in infra mode and frames are handled by meshap process mgmt frame.

For data frames also, meshap checks that if it is in a mixed mode or not. If
yes then based on the Torna header flags, sets it current mode as
IW_MODE_INFRA or IW_MODE_MASTER and handles the frames accordingly.

The control frames in the existing MeshDynamics architecture are handled by
the device driver. After integration, the control frames will be handled by
the mac80211.

IMCP message handling
IMCP stands for Infrastructure Mesh Control Protocol, used and managed in
Mesh networks for configuring network parameters and through IMCP the mesh
nodes will also form the hash table of underlying nodes with which it can
communicate, this is being done by heartbeat messages received by IMCP.

Some of the IMCP messages are processed in kernel and others in userspace by
configd daemon.

Meshap receives IMCP messages from Network viewer and configures the
specified parameters and iIn some cases responses back to the network.

The below figure shows format of IMCP packet structure

33]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

0 1 2 3 4 5 6 7

0 IMCP SIGNATURE Version InfolPT
7 | MIDL Mesh ID (MIDL octets)
PACKET DATA

N

Figure 17 IMCP packet format

PT: PT stands for packet type Maximum value of this is 127, where Most
Significant Bit used as flag for encryption.

MSB = O(encryption disabled)
MSB =1(encryption enabled)

Packet Data is encrypted depending on encryption flag. E.g. of different
Packet Types are

Handshake request

AP Hardware Info

Version Info: Version Info includes 1 byte major version followed by 1
byte minor version.

MIDL: MIDL stands for Mesh 1D

IMCP SIGNATURE: IMCP SIGNATURE is 4 byte field, when the IMCP messages are
received the signature part version and packet type is checked before
processing the packet. it usually contains ‘I’, 'M’, ’'C’,’P’ as signature.

PACKET DATA: It contains the Packet data e.g. If it Is a Heartbeat packet
then it contains information about the Heartbeat packet.

Examples of IMCP Messages:

IMCP_SNIP_PACKET_TYPE_HEARTBEAT: This message processes Heartbeat packet.

IMCP_SNIP_PACKET_TYPE_STA ASSOC_NOTIFICATION: This message gives notification of
station association.

IMCP_SNIP_PACKET_TYPE_STA DISASSOC_NOTIFICATION: This message gives notification of
station disassociation.

There 1s no change iIn the design part with respect to IMCP; it is used the
same way as In MeshDynamics.

Design Details

13.1 Boot time Initializations

The meshap is initialized and started up in three phases as described below:

3] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

Init Phase - Meshap maintains a "meshap_core net if _t" global structure for
keeping information of all the devices which are created (like wlanO,
wlanl...). At startup, the configd daemon iInitiates an INIT_MESH CMD ioctl
command which is handled by meshap and meshap ipopulates the
meshap_core _net if t data structure. This structure is used by meshap for
managing net devices. Figure 18 describes the init Phase.

Figure 18 Meshap Init Phase

Configuration Phase - Meshap uses a configuration file (meshap.conf) which
contains the complete iInformation which is required by meshap to configure
each device present on the system as well as the meshap®s iImplementation
specific parameters 1like “heartbeat interval”, “preferred parent”, “model”
etc that are required by meshap. This configuration file is placed at path
/etc/meshap.conf on the file system. Meshap generates the hostapd.conf file
which will be used by hostapd as 1its input configuration file. The
configuration read by from the meshap.conf files is also used to configure
the Uplink and the scanning interfaces. The following steps are followed in
the configuration phase:

The configd daemon reads the meshap.conf configuration file and
populates its global meshap _device conf_t data structure with all the
information present iIn the meshap.conf fTile.

Configd generates the hostapd.conf fTile for interfaces whose

Usage type is “wm” in the meshap.conf file

Configd configures the meshap by passing configurations using
SET_CONFIG_<TYPE>_CMD 1ioctl, where TYPE 1is the type of configuration
parameter which is to be configured. For example, 1T configd needs to set
the RTS threshold parameter, it issues a SET _CONFIG_RTS TH CMD to meshap
which updates this parameter to its data structure.

The Figure 19shows configuration phase.

35]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

Figure 19 Config Phase for Meshap Init

Upon successfully configuring the parameters to meshap, the configd daemon
will issue the "iwconfig®" command for the interfaces whose usage type is "ds”
in the meshap.conf configuration file. Configd prepares a command type like
"iwconfig <interface name> rts <rts value>" and this command will be executed
using the "system®" APl call.

Starts Phase - Upon successful completion of the configuration phase, the
configd daemon initiates the next step of starting the meshap and the hostapd
daemons. The registration of hook functions for the redirection of packets to
and from meshap is also done iIn this phase. The following steps are followed
to bring the entire system up and running:

36] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

1. Configd issues the START _MESH CMD ioctl to meshap and meshap
registers its TX and RX hook functions with mac80211 block.

2. Meshap starts its access point thread and marks i1ts state as
_MESH_STATE_RUNNING .

Figure 20 shows the start phase.

Start Phase

CONFIGD Meshap

Start mesh

START_MESH_CMD
-

Set meshstate
MESH _STATE_RUNNING

Figure 20Start Phase of Meshap

After the start phase, the system is considered to be completely up and it
can start handling any packet it receilves.

13.2 Packet Path handling
During initialization of ath5k driver, various tasklets are initialized.
ath5k _tasklet _rx and ath5k tasklet tx are the tasklets initialized for
processing for received frame at the interface and processing of TX frame
which 1s already transmitted respectively.

When frame is received at wireless interface card and copied to driver
memory, interrupt is generated to handle the frame. In interrupt context
decision is made on the basis of status of the frame. IT interrupt received
is fatal error, then work queue is scheduled to reset the interface card in
order to prevent the error. Since fTatal errors are irrecoverable so the only

37]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

option is to reset the card. If for previously transmitted frame, if
interrupt received is TX_ERR or TX _OK then ath5k_tasklet_tx tasklet will be
scheduled. If frame is transmitted successfully then it will be freed and in
case of error same frame will be reused. If the received interrupt is for
frame received successfully then tasklet for Rx will be scheduled and
athbk_tasklet_rx will called as soon as interrupt will be returned. If the
received descriptor is not pending for the processing from wireless interface
card then the memory buffer containing the frame will be unmapped from
preventing further DMA operation and new memory buffer will be allocated and
mapped to device.

To process the frame received at interface, tasklet function ath5k_tasklet_rx
is called iIn interrupt context. This tasklet function calls the
athb5k_receive_frame_ok to verify that receive frame is not invalid frame. If
the frame received is valid then it returns TRUE otherwise false. If the
frame received i1s valid then it calls ath5k receive frame. From the received
frame status i1t finds the current channel centre frequency, frequency band,
signal and antenna and the update the received signal strength index (rssi)
if the received frame is beacon. During frame processing another function
ieee80211_invoke_rx_handlers is called. This function checks the retry bit
and sequence number of the received frame. ITf the frame is duplicate frame
then it is dropped. Also it fTilters the frame based on the station auth/assoc
status. It drops the frame from non-associated station.

For further processing of the received frame receive path handler of mac80211
is called. This is the function called by low level driver when 802.11 MPDU
is received from the hardware. This function internally calls the actual Rx
frame handler __ieee80211 rx_handle_packet. This must be called with

rcu_read lock protection. Based on the type of frame received and virtual
interface type of the interface which received the frame various function is
called to process the frame further which is discussed below.

TX frame handling:

When meshap needs to sends the TX frame through the device interface, it
calls dev_queue_ xmit. The function dev_queue_xmit calls the function
__dev_queue_xmit internally. This function queue a buffer for transmission to
a network device. This function can be called from interrupt context. It
calls netdev_pick _tx to choose the TX queue for transmission. If there is
queuing discipline for the network device then it calls the _ dev_xmit_skb
with skb, txq, and dev as input parameters. After the en-queuing the frame to
queue, this function calls the _ _qdisc_run to transmit the frame. _ qgdisc_run
internally invokes the qdisc_restart and pass the queue as input parameter.
This de-queue the one frame from queue and calls the sch_direct_xmit
function. sch_direct_xmit calls the function dev_hard_start xmit to transmit
the frame with input parameters frame pointer skb and net-device pointer dev.
The function dev_hard _start xmit calls the driver defined transmit function
ops->ndo_start_xmit which is registered with kernel. This is the actual
function which is use to add the frame directly to dma queue.

IT the device has no queue (loopback, tunnels) then in this case it calls
dev_hard_start_xmit and called interface internally calls the driver®s Tx
function to transmit function to transmit the frame.

38]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.2.1 Torna Header Handing
Torna header is an important header for frame processing. Torna header
updating is valid only when frame is processed by meshap. Whenever frame is
received from the iInterface, Torna header is updated from the available
control information from the frame and sends to meshap for further
processing. Similarly whenever frame iIs transmitted from meshap, Torna header
is stripped and sends to the wireless driver for the transmission. Torna
header updating and stripping is done in mac80211 in linux kernel.

In struct sk _buff, the structure element mac_header is used for the
processing of Torna header. For the reception of frame, along with frame
size of memory, Torna header memory is also allocated.

skb->mac_header = (torna_mac_hdr_t*)kmalloc(sizof(torna_mac_hdr_t),
GFP_KERNEL);

when frame is received at the interface, it is processed by the driver. It
calls the update _meshap_torna_header function exported by mac80211 for the
updating of Torna header. First it updates signhature and type of the Torna
header. Without the Torna header signature meshap will not process the frame.

hdr = (torna_mac_hdr_t*)skb->mac_header;
hdr->signature[0] = TORNA_MAC_HDR_SIGNATURE_1;
hdr->signature[1] = TORNA_MAC_HDR_SIGNATURE_2;
hdr->type = TORNA_MAC_HDR_TYPE_SK_BUFF;

After updating the signature and type, frame control field of the frame is
traversed and parameters like various addresses of frame, rssi, tx _rate and
various meshap header flags are maintained.

13.2.2 Management Packets

To send the management frame to meshap in case of AP, a hook
process_meshap_mgmt_frame is called in function i1eee80211 rx_h userspace_mgmt
defined in mac80211. These frames are also sent to the hostapd in case if
interface works as AP. For sending the frame to user space, cfg80211 rx_mgmt
is called. 1t further calls the nl80211 send_mgmt function. This function
further allocates the page size or 8kb of memory and update the netlink
header and copy frame content to allocated memory. The allocated frame is
then added to the end of the receiving socket queue.

The entire frame belonging to management frame will be transmitted to hostapd
and meshap. The hostapd daemon will process the frame and send the response
to the station while meshap process the frame and maintains it data
structure. Meshap will not transmit the response frame as response is already
sent by hostapd.

13.2.3 Control Packets
The entire control frame is handled by Linux kernel. This is handled by the
function 1eee80211 rx_h_uapsd_and_pspoll and 1eee80211 rx_h_ctrl. IT mobile
station has no data to send to distribution system, it sends null frame with
power management bit set in the frame control field. This indicates the
change iIn power status of the station. So null frame sending station is

39]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

marked as sleep and set the station status WLAN_STA PS STA. Station will wake
up periodically to check if there any available data to receive. For this
station sends PS-POLL frame to AP. If there is any data corresponding to the
station which sends PS-POLL frame, AP will release the buffered data to the
wake up station.

Another example of control frame is RTS, CTS and ACK frame. If station wants
to transmit bulky data, before transmission it send request to send (RTS)
frame to the AP. Upon receiving the control to send (CTS) frame station will
transmit the required data.

13.2.4 Data Packets
The entire data frame should be processed by meshap. Meshap is the
controlling entity which will decide the fate of the frame. If it is consumed
by the host then frame will be handover to the network stack otherwise frame
will be forwarded to other node based on mesh routing

13.3 Meshap APIs with the mac80211
Meshap has exported quite a few symbols, which are currently used by the
athb5K drivers. The sections below list down the various symbols exported by
meshap and how they will be used w.r.t. mac80211 code

13.3.1 meshap_get_board_temp
This function is unimplemented in meshap code. It returns O by default.
Hence, this API will not be called from mac80211 code.

13.3.2 meshap_get _board_voltage
This function is unimplemented in meshap code. It returns O by default.
Hence, this API will not be called from mac80211 code

13.3.3 meshap_set_led_on
This function calls the led _brightness _set api of linux stack with argument
LED FULL. Meshap will continue to use this APl. In all the code paths where
LED is set to ON, the same function will be called in the mac80211 code path
also.

13.3.4 meshap_set_led off
This function calls the led _brightness _set api of linux stack with argument
LED OFF. Meshap will continue to use this API. In all the code paths where
LED is set to OFF, the same function will be called in the mac80211 code path
also.

13.3.5 meshap_set led blink
This function calls the led blink _set api of linux stack with the "delay”
argument specifying the frequency of blink as 1000. Meshap will continue to
use this APl. In all the code paths where LED is set to BLINK, the same
function will be called in the mac80211 code path also.

13.3.6 meshap_set led blink_ fast
This function calls the led_blink_set api of linux stack with the “delay”
argument specifying the frequency of blink as 200. Meshap will continue to
use this AP1. 1In all the code paths where LED is set to BLINK, the same
function will be called in the mac80211 code path also.

40| © MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.3.7 meshap_set led blink_once
This function calls the led_brightness_set api of linux stacks with argument
as LED OFF and modifies the timer to expire after 1000 hz. Meshap will
continue to use this APl. In all the code paths where LED is set to BLINK,
the same function will be called in the mac80211 code path also.

13.3.8 meshap _enable_reset _generator
This function is not implemented in the meshap code and hence won’t be called
from mac80211 code as well.

13.3.9 meshap_strobe_reset_generator
This function is not implemented in meshap code and hence won’t be called
from mac80211 code as well.

13.3.10 meshap_get _gpio
This function is unimplemented in meshap code. It returns O by default.
Hence, this APl will not be called from mac80211 code.

13.3.11 meshap_set _gpio
This function is unimplemented in meshap code. It returns O by default.
Hence, this APl will not be called from mac80211 code.

13.3.12 meshap_get_gps_info
This function gets the gps location of meshap. Meshap will continue to use
this API.
13.3.13 meshap_set_gps_info
This function sets the gps location of meshap. Meshap will continue to use
this APL.
13.3.14 meshap_process_mgmt_frame

This api is called by the atheros driver when i1t receives a management frame
and is used to pass the frame to meshap for processing. With the mac80211
code, a hook will be added which will generate the copy of the frame and give
the frame to meshap for processing. Meshap will then call

meshap_core_process _mgmt_frame and process the management frames.

13.3.15 meshap_process_data_ frame
This api is called by the atheros driver when it receives a data frame and is
used to pass the frame to meshap for processing. With the mac80211 code, a
hook will be added give the frame to meshap for processing. Meshap will then
call meshap core process data_ frame and process the data frames.

13.3.16 meshap_on_link notify
The api is called from meshap code from the following code paths

a. When a station gets associated / disassociated, then this meshap hook gets
called in case of relay node processing for the uplink interface. This is
because the uplink interface of the mesh node acts like a station.

b. Meshap registers with the netdev notifier to get updates about the state of
the link. Any change in the state of the link is notified via meshap callback
handler which ends up calling the above API.

c. In the previous code, the driver has a callback registered for
on_phy_link_notify_watchdog. <TBD: need to check where it happens now>

41]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.3.17 meshap_on_net_device_create
This api is called when a mipO device creation notification iIs received from
linux. It creates the core_net_ if _t structure when a mipO device is
registered (on receiving NETDEV_REGISTER event) or on receiving NETDEV_CHANGE
event.

For wireless interfaces, this api i1s currently called by the
atheros_attach api.

For integration with mac80211, meshap on_net device _create will be called for
wireless interfaces on trigger from configd.

13.3.18 meshap_on_net_device_destroy
This api is called when a mipO device is un-registered (on receiving
NETDEV_UNREGISTER event). Meshap removes the entry for this device from
core _net_if_t structure.

13.3.19 meshap_get_sta_ info
Wireless Network drivers shall call this function to obtain information about
a destination mac-address from the meshap LKM. The most common use of this
function is in the “hard_header™ handler for the net_device. The Kernel calls
the hard_header handler, when sending packets from the stack directly through
the network device.

With mac80211 integration, it is not required to call this APl as the drivers
get this information directly from mac80211.

13.3.20 meshap_reboot_machine
This function is called by the atheros tx routine of meshap when the TX
buffer pool overflows. In this case meshap needs to be restarted. For
integration with mac80211, this would not be required.

13.3.21 torna_hw_i1d_get _address
This api is unimplemented in meshap. It is used to set the mac address of the
device. The setting of mac addresses of the devices will be handled by
standard wireless drivers.

13.3.22 torna_get_product_oui_id
This api is unimplemented in meshap and not called by meshap. . Hence, this
AP1 will not be called from mac80211 code.

13.3.23 torna_get _generic_id
This api is unimplemented in meshap and not called by meshap. Hence, this
API will not be called from mac80211 code.

13.3.24 torna_put_reboot_info
This api is unimplemented in meshap. It is called from _meshap_panic_event
and meshap_die_event APIs. . Hence, this APl will not be called from

mac80211 code

13.3.25 torna_get_reboot_info
This API populates the ""reboot"™ proc entry.

42]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.4 Meshap hook functions registered with the driver

In the current code, meshap registers various hook functions with the
drivers, which are then called by the driver explicitly to notify meshap of
the various events. The sections below list down the various hook functions,
their functionality in the current code and how the same functionality will
be achieved with the mac80211

13.4.1 round_robin_hook

The hook is registered by meshap to the driver, so that the driver can inform
meshap when it receives beacons from the AP. This is set by the function
_meshap_net_dev_set_round_robin_notify_hook().

13.4.2 probe_request_hook

The hook is registered by meshap to the driver, so that driver can inform
meshap whenever the station sends the probe request to the AP. This will be
required in the case of relay node on the uplink interface, where the
interface acts like a station. It is set by the function

_meshap_net_dev_set_probe_request_notify_hook()

13.4.3 radar_hook

<TBD: Need some inputs>

13.5 Meshap netdev ops
13.5.1 set_hw_addr

In the current implementation a vector for set hw_addr is registered in the
meshap_net_dev_t structure. This vector calls the ath_hal_setmac api to set
the mac address in the device.

With the mac80211 code, each device registers with net _dev a function to set
the mac address.

set_hw_addr will be modified to call the ndo_set mac_address from the net _dev
directly.

13.5.2 associate

In the current implementation, when the meshap wants to send the associate
request to the parent, it calls ath5K routine to send the associate request.

ret =
atheros_sta fsm_join(instance,essid, length,bssid,channel,ie_in,ie_in_length,i
e_out);

However, now since the intention is to make the code independent of the ath5k
specific drivers, the code will be changed to call the cfg 80211 routines to
generate the association request. During the boot time, drivers call the
ieee80211 specific initializations where they register the ops specific to
mac80211. Hence, those ops will be called to handle send the association
request from a particular interface.

err = rdev->ops->assoc(&rdev->wiphy, dev, &req);

13.5.3 dis_associate

43]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

In the current implementation, when the meshap wants to send the dis-
associate request to the parent, it calls ath5K routine to send the dis-
associate request

ret = atheros_sta fsm_leave(instance,1l,WLAN REASON_UNSPECIFIED);

However, now since the intention iIs to make the code independent of the ath5k
specific drivers, the code will be changed to call the cfg 80211 routines to
generate the association request. During the boot time, drivers call the
1eee80211 specific initializations where they register the ops specific to
mac80211. Hence, those ops will be called to handle send the association
request from a particular interface.

rdev->ops->disassoc(&rdev->wiphy, dev, &req, wdev);

13.5.4 get_bssid
In the current implementation, when the meshap wants to get the bssid, It
coplies same from the driver’s instance structure associated with the wireless
device.

The code used to do the following:-
memcpy(bssid, instance->current_bssid,ETH_ALEN);

Now the code, will be modified to get the value from the ieee80211 ptr
associated with the netdev.

It will be fetched using the following:-
struct wireless _dev *wdev = dev->ieee80211 ptr;

memcpy(bssid, wdev->current_bss->pub.bssid, bssid, ETH_ALEN) ;

13.5.5 scan_access_points
In the current code, there is a function written for the scanning, the result
of which is used for the determining the active parent for the relay node. In
this code, the thread sleeps till the response for message sent arrives and
the response is used for figuring out the results.

In mac80211, the scan code is quite different. Mac80211 provides various APls
to start the scanning and notify when the call-back gets completed. The scan
code In Meshap needs to be changed to be able to get integrated with the
mac80211 code.

13.5.6 scan_access_points_active
In the current code, there is a function written for the scanning, the result
of which is used for the determining the active parent for the relay node. In
this code, the thread sleeps till the response for message sent arrives and
the response is used for figuring out the results.

In mac80211, the scan code is quite different. Mac80211 provides various APIls
to start the scanning and notify when the call-back gets completed. The scan
code In Meshap needs to be changed to be able to get integrated with the
mac80211 code

44]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.7 scan_access_points_passive
In the current code, there is a function written for the scanning, the result
of which is used for the determining the active parent for the relay node. In
this code, the thread sleeps till the response for message sent arrives and
the response i1s used for figuring out the results.

In mac80211, the scan code is quite different. Mac80211 provides various APls
to start the scanning and the notify them, when the call-back gets completed.
The scan code in Meshap needs to be changed to be able to get integrated with
the mac80211 code

13.5.8 get_last _beacon_time
In the existing code, this is implemented by fetching the value from the
driver instance structure.

However, the “op” is not getting called from meshap. Hence, the
implementation of this op will return O.

13.5.9 set_mesh_downlink _round_robin_time
This is used to set the configuration parameter, for round robin_time. This
iIs being used by the driver to set the time interval of sending message to
various stations connected to the Access point.

Now, since the messages to the various stations will be triggered by hostapd,
meshap won’t have any role to play for this. This will be stubbed out in the
current meshap code.

13.5.10 add_downlink_round_robin_child
This is used by the meshap code, to add the station to the driver. This is
done as part of the processing of the association messages received from the
stations. In the current code, meshap is directly adding the child to the
driver.

However, now informing about the child to the driver will be managed by
hostapd and meshap doesn’t need to worry about it.

Hence, this function will be stubbed out.

13.5.11 remove_downlink _round_robin_child

This is used by the meshap code, to remove the station from the driver. This
is done as part of the processing of dissociate message, or for any other
reason meshap was to disassociate the child.

However, now informing about the child to the driver will be managed by
hostapd and meshap doesn’t need to worry about it.

Hence, this function will be stubbed out.

13.5.12 virtual _associate
<TBD: Need some inputs >

13.5.13 get_duty cycle_info
<TBD: Need some inputs >

13.5.14 set_rate_ctrl_parameters
<TBD: Need some inputs >

45]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.15 reset rate ctrl
<TBD: Need some inputs >
13.5.16 get_rate_ctrl_info
<TBD: Need some inputs >
13.5.17 set_round_robin_notify_hook
<TBD: Need some inputs >
13.5.18 enable_ds_verification_opertions
<TBD: Need some inputs >
13.5.19 dfs_scan
<TBD: Need some inputs >
13.5.20 set_radar_notify_hook
<TBD: Need some inputs >
13.5.21 get_mode

In the current implementation, this function is used to fetch the mode from
the instance structure. This is used by meshap during the init time.

With the mac80211 code, the implementation of the APl, will be changed to
fetch the value from the meshap’s private structure stored in the
ieee80211 hw structure.

13.5.22 set_mode

In the current implementation, this function is used to set the mode for each
of the iInterfaces in the instance structure associated with the driver. This
is done during the iInit time.

With the mac80211 code, the mode will be computed and set in the driver’s
ieee80211 _hw structure

13.5.23 get_essid
This function returns the stored essid in the atheros instance_ t
structure.When an association frame is received by meshap, it compares the
receive ssid information element with the value returned by get essid. If the
ssid matches, association is allowed. Meshap will continue using this API.

13.5.24 set_essid
This function sets the ssid for the interface. This information is obtained
from the configuration file and stored in the atheros_instance t structure.
Meshap will continue using this API.

13.5.25 get_rts_threshold

This function returns the rts threshold value which is present in the
atheros_instance_t structure. Meshap uses this value while transmitting a
packet.

For integration, mac80211 will transmit the packets, and takes care of rts
threshold handling.

46] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.26 set_rts_threshold
This function sets the rts threshold value in the atheros instance t
structure. Meshap will store this information.

13.5.27 get_frag_threshold
This function returns the fragmentation threshold value which is present in
the atheros_instance_t structure. In the current implementation the
_atheros_setup_packet function gets the frag threshold from the api
_atheros_get_fragment_size. Meshap then fragments the packet.

13.5.28 set_frag_threshold
This function stores the value of fragmentation threshold in the
atheros_instance_t structure of meshap. This function is called while
applying the configuration at startup or in the IMCP message handling.

In mac80211, If the device does the fragmentation itself then
“set frag threshold” defined by the driver will be called by mac80211 to do
fragmentation else mac80211 will itself fragment the packets.

For integration, meshap can send the packet to mac80211 and mac80211 will
take care of fragmenting the packet if required.

13.5.29 get _beacon_interval
Meshap never handles the probe response and it never sends the beacon
interval. This information is maintained by meshap in the core_net_if
structure.

13.5.30 set_beacon_interval
Meshap stores this information in core_net if structure. Meshap will
not send any beacons.

13.5.31 get_default_capabilities

On startup, meshap sets the default capabilities in the “default capability”
field of atheros_instance_t structure. The capability information s used in
beacon transmissions to advertise the network"s capabilities. Capability
Information is also used in Probe Request and Probe Response frames.

Since meshap is not sending beacons, capability information is not used
13.5.32 get_capabilities

On startup, meshap sets the default capabilities in the “capability” field of
atheros_instance_t structure. The capability information is used in beacon
transmissions to advertise the network®"s capabilities. Capability Information
is also used in Probe Request and Probe Response frames.

Since meshap is not sending beacons, capability information is not used
by it.

13.5.33 get_slot_time_type
This field is the part of the capability field. This is only used for
beacon frames.

47]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.34 set_slot_time_type
This field is the part of the capability field. This i1s only used for
beacon frames.

13.5.35 get_erp_info
This api returns the erp value. This is not being called in the current
code.

13.5.36 set_erp_info
This field is the Effective Radiated power. This Field is set only for
WLAN_PHY_MODE_802_11 G and WLAN_PHY_MODE_802_11 PURE_G. When meshap receives
a beacon, it processes it and gets this information from received beacon. It
then compares this information with the stored In the extended_rate_ phy info
field of the iInstance structure. If the value is changed, meshap updates
extended _rate phy info field the value received in the beacon frame.

After integration, the beacon frames will be received by hostapd and meshap
and meshap will handle the erp info . Meshap will not respond to this beacon.

13.5.37 set_beacon_vendor_info
This parameter is set by meshap which iIs sent in beacon frame. If the node is
a root node, then the vendor id used is the DS mac of the root node, if the
node is relay node, the vendor id used is parent"s bssid. Hostapd will
configure this value in the parameter “vendor elements”

13.5.38 enable_wep
This is used by meshap to set the flag field iIn instance structure with value
ATHEROS_ INSTANCE_FLAGS WEP_ENABLE and if this value is set then meshap
updates the “capability® field of instance structure with
WLAN_CAPABILITY_PRIVACY flag.

This Tield is applicable in the context of sending beacon frames, and since
meshap will not send out beacons, it will not be required while integrating
with mac80211.

13.5.39 disable_wep
This is used by meshap to clear the flag field in instance structure with
value ATHEROS_ INSTANCE_FLAGS_WEP_ENABLE.

13.5.40 set_rsn_1ie
This is used by meshap to set the flag field in instance structure with value
ATHEROS_INSTANCE_FLAGS_RSN_IE_ENABLE and if this value is set then meshap
updates the "capability® field of instance structure with
WLAN_CAPABILITY_PRIVACY flag.-

This field is application in the context of sending beacon frames, and since
meshap will not send out beacons, it will not be required while integrating
with mac80211.

13.5.41 set_security_key
This is configured at init time. It will be configured using
hostapd/iwconfig. Meshap uses this to get the key during the iInit time.

Since, initializations will be taken over by the mac80211/hostaps, since
meshap 1Is not supposed to configure this.

48] © MeshDynamics 2002-2018. All Rights Reserved.

mesh

However, when this routine is called meshap will store the key in its local
structure to be able to use the same in processing later on.

13.5.42 release_security_ key
In the current meshap code, it is called when the key needs to be released
from the driver. Now, this functionality should be handled by mac80211 and/or
hostapd. Meshap shouldn’t have any role to play in this.

However, when this routine is called meshap will remove the key info from its
local structure.

13.5.43 get_security key data
In the current meshap code, it is called in the processing of the auth
frames.

Now, this functionality will be handled by mac80211 and/or hostapd. However,
since meshap will also receive the auth frames, process 1t and send the auth
response, it will do so using the key info stored in the local structure.

However, the auth frames, will be blocked in the end from being transmitted.
The implementation will fetch the values from the local structures.

13.5.44 set_ds_security_ key
In the current meshap code, it is called on the relay node to set the
encryption key based on the data received from the parent.

With the current code, the mac80211 APIs will be called directly to set the
key in the driver.

13.5.45 get_supported_rates
Meshap initializes the supported rates during its initialization. Meshap uses
this value to setup beacon and respond to probe response contents. Meshap
also receives this value in probe req and response messages.

Since, the response of the messages will be sent by mac80211 and not meshap,
meshap doesn’t need this api.

At the same time, every driver sets up this value at the init time. Hence,
the data can be fetched if required.

13.5.46 get_extended_rates
Meshap initialized the extended rates during initialization. It then puts
this value In the association response. Meshap will not send the management
response so no mac80211 api is required. Meshap will just not transmit the
association response..

13.5.47 get_bit_rate
Meshap sends the bit rate information in the heartbeat IMCP message. Meshap
needs to retrieve this information from its database

13.5.48 set _bit _rate
This is the txrate parameter of each WLAN interface defined by the
meshap.conf Ffile. This is a configuration parameter and set via hostapd or
iwconfig.

13.5.49 get_rate_table
<TBD>

49]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.50 get_tx_power
Meshap is not calling this.

13.5.51 set_tx_power
On transmission, meshap sets the TX power in the driver. It can be configured
using iwconfig when needed

13.5.52 get_channel _count
This api is not being called by meshap.

13.5.53 get_channel
This function gets the current operating channel on an interface. Meshap can
call rdev->ops->get_channel which maps to ieee80211_wiphy_get_channel. This
will return the current operating channel.

13.5.54 set_channel
This function sets the current operating channel on an interface. Meshap can
call rdev->ops->set_channel which maps to ieee80211 set channel. This will
set the current operating channel.

13.5.55 get_phy mode
This function returns the current phy mode of the device. When the phy mode
is 80211G or 80211BG. Meshap uses this information to set the preamble time
and erp info for this phy mode.

13.5.56 set_phy_mode
This is being set during the init time to configure the drivers
appropriately. However, now the drivers should get set using
hostapd/mac80211. Hence, meshap is not supposed to set these fields in the
driver.

However, meshap will maintain a local structure and then store the
information iIn the local structure for reference iIn various scenarios.

13.5.57 get_preamble_type
This is not getting called in the current meshap code. However, we will
maintain the value in a local structure in cre_net_if. The value can be
fetched using that.

13.5.58 set_preamble_type
In the current meshap code, this is being called during the init time and the
value i1s being set directly into the Atheros structure. Since, this is the
part of initialization, the mac80211/hostapd code takes care of setting the
appropriate values in the driver. Hence, from the meshap perspective it
doesn’t require it. However, still the value will be stored in a local
structure maintained in core_net_if.

13.5.59 set_dev_token

In the current meshap code, a token iIs being set iInto the instance structure
of the driver. This structure is used to fetch the local representation of
dev from the instance and get all the information quickly.

The token will be set in the i1eee80211 hw structure.

50]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.60 set_essid_info

In the current implementation a vector for set ssid_info is registered in the
meshap_net_dev_t structure. The information is later used by the driver to
respond to the beacon requests.

However, with the mac80211 code, the beacons will be handled by mac80211 code
and meshap will not sending them out. Hence, this function doesn’t have much
used. However, we will store the information in the device specific
structure, so that if any need arises, meshap can easily fetch the value.

13.5.61 get_ack_timeout
In the current implementation meshap does not call this api . Hence, this
will be stubbed out.

13.5.62 set_ack _timeout
In the current implementation a vector for set_ack_timeout 1is registered in
the meshap net _dev_t structure. This vector calls the ath_hal_setacktimeout
api to set the ack timeout in the device.

With the mac80211 code, set _ack timeout will be modified to call the
set_coverage_class to set the ack timeout value.

13.5.63 get_reg_domain_info
In the current meshap implementation this is not being called.

13.5.64 set_reg_domain_info
It sets various parameters in the meshap, it iIs being set during init
time.

Need to check whether these parameters can be configured with hostapd and
iwconfig n it is being set during init time.

13.5.65 get_supported_channels
In the current implementation get supported _channels is used to get the
supported channel based on phy mode, It is being called for
mesh_imcp_send_packet_supported channels_info to send the supported channel
information.

13.5.66 get _hide_ssid
This is not being called in meshap design.

13.5.67 set _hide_ssid
In the current implementation set hide _ssid is used to set the hide_ssid is
enable or disable into the device. Now the parameter will be set through
hostapd and this is moved out from meshap.

In the mac code set hide_ssid can be done through calling
ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev, struct
cfg80211_ap_settings *params)

13.5.68 set_dotlle category_info
In the current implementation set_dotlle category_ info is used to set various
parameters such as category, acwmin, acwmax, aifsn, disable_backoff and
burst_time.

Now this is being moved out from mesh and set it through hostapd.

51]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.5.69 set_tx _antenna
In the current implementation set_tx_antenna is set during init time and this
is now moved out of meshap and set it through hostapd.

Not able to get the exact parameter in hostapd <TBD>.

13.5.70 set_radio_data
Not being called in meshap

13.5.71 radio_diagnostic_command
<TBD: Need more inputs>

13.5.72 set_probe_request_notify_hook
This is a hook function which meshap will register with mac80211 and mac80211
code will be modified to call this hook whenever probe request will generate.

13.5.73 set_virtual mode
This i1s meshap specific function used to set Master and Infra mode for the
virtual interface.
Now, we will create virtual interfaces explicitly and enable hostapd/mac80211
to run on the virtual interface i1tself. Hence, from the mac80211 perspective,
it doesn’t require the wvirtual mode.

However, from meshap perspective the current processing will remain. The
mode for the interface will be set in the core_net_if structure locally.

13.5.74 set_device_type
In the current meshap code, this is used to set the device type as virtual
and the device_mode as MIXED. Since, for the mac80211 code, there will be
separate interfaces created and it handles the virtual interfaces, there is
no need to set the device type.

However, for the meshap purposes, device type is required to be set and will
be used to determine the interface on which the packet arrived. The device-
type and mode will be stored directly in the core net if structure, instead
of the iInstance structure as happening currently.

13.5.75 get_device_type
In the current implementation, this is used to get the device type associated
with the device on which the packet arrived. Based on the type of device, the
physical or the virtual core net if is used for the packet processing.

The new implementation will fetch the value from the core_net_if structure
and let the callers of the functions take appropriate decisions.

13.5.76 initialize_mixed_mode
In the current implementation, this is used to set the mode in the Atheros
driver and reinitialise the driver.

However, with mac80211, this will be managed via hostapd/mac80211 directly
and meshap

doesn’t need to do anything about this. Hence, the implementation of this
function will be stubbed out.

13.5.77 enable_beaconing_uplink
In the current meshap code, through the imcp messages, the uplinks can be
enabled to send beacons. This iIs something which is special to meshap and

52]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

will be handled specifically for meshap. Hence, in the mac80211 code, the
changes will be done to allow the beacons coming from uplink to be forwarded
to meshap for processing. However, mac80211 won’t process those beacons.

13.5.78 disable_beaconing_uplink
In the current meshap code, through the Imcp messages, the uplinks can be
disabled to send beacons. This is something which is special to meshap and
will be handled specifically for meshap.

13.5.79 set_action_hook
The set_action_hook is used to process action frames iIn meshap, so will
register set_action_hook with mac80211 to handle these frames.

13.5.80 send_action
The meshap will call Send_action hook to transmit the action frames. The
current implementation of the send_action hook calls the atheros driver
routine to transmit the frame. Now the implementation will be modified to
call the mac80211 transmit routines.

13.6 al 802 11 ops

13.6.1 Associate
This function invokes the corresponding associate callback of
meshap_net_dev_ops and is described in the section associate.

13.6.2 dis_associate
This function invokes the corresponding dis_associate callback of
meshap_net_dev_ops and is described in the section dis associate.

13.6.3 get_bssid
This function invokes the corresponding get_bssid callback of
meshap_net_dev_ops and is described in the section get bssid.

13.6.4 send_management_frame
This api sends the management frames out from meshap. Since meshap will only
process the management frames, this APl will be as it is but will not
transmit any management response. For this the transmit calls will be stubbed
out in this function.

13.6.5 scan_access_points
This function invokes the corresponding set_access points callback of
meshap _net_dev_ops and is described in the section scan access points.

13.6.6 scan_access_points_active
This function invokes the corresponding set_access points_active callback of
meshap _net_dev_ops and is described in the section scan access points active.

13.6.7 scan_access_points_passive
This function invokes the corresponding set_access points_passive callback of
meshap_net_dev_ops and is described in the section
scan_access points_passive.

13.6.8 set_management_frame_hook
This api sets the process_management_frame callback function _Meshap will
continue to use this function to set the hook.

53]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.6.9 set_beacon_hook
Meshap does not implement this function.

13.6.10 set_error_hook
Meshap does not implement this function.

13.6.11 get_last _beacon_time
This function invokes the corresponding get last beacon_time callback of
meshap_net_dev_ops and is described in the section get last beacon time.

13.6.12 set_mesh_downlink_round_robin_time
This function invokes the corresponding set _mesh_downlink round_robin
callback of meshap_net_dev_ops and is described in the section
set _mesh downlink round robin time.

13.6.13 add_downlink_round_robin_child
This function invokes the corresponding add_downlink_round_robin_child
callback of meshap_net _dev _ops and is described in the section
add downlink round robin_child.

13.6.14 remove_downlink _round_robin_child
This function invokes the corresponding remove_downlink_round_robin_child
callback of meshap _net _dev _ops and is described in the section
remove_downlink round robin child.

13.6.15 virtual _associate
This function invokes the corresponding virtual associate callback of
meshap _net_dev_ops and is described in the section virtual associate.

13.6.16 get_duty cycle_info
This function invokes the corresponding get duty cycle_ info callback of
meshap_net_dev_ops and is described in the section get duty cycle info.

13.6.17 set_rate_ctrl_parameters
This function invokes the corresponding set_rate_ctrl_parameters callback of
meshap_net_dev_ops and is described in the section set rate ctrl parameters.

13.6.18 reset_rate_ctrl
This function invokes the corresponding reset_rate_ctrl callback of
meshap_net_dev_ops and is described in the section reset rate ctrl.

13.6.19 get_rate ctrl_info
This function invokes the corresponding get_rate _ctrl_info callback of
meshap_net_dev_ops and is described in the section get rate ctrl info.

13.6.20 set_round_robin_notify_ hook
This function invokes the corresponding set _round _robin_notify hook callback
of meshap_net_dev_ops and is described in the section
set round robin_notify hook.

13.6.21 enable_ds_verification_opertions
This function invokes the corresponding enable_ds verification_operations
callback of meshap_net_dev_ops and is described in the section
enable ds verification opertions.

54]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.6.22 dfs_scan
This function invokes the corresponding dfs_scan callback of
meshap_net_dev_ops and is described in the section dfs scan.

13.6.23 set_radar_notify_hook
This function invokes the corresponding set_radar_notify_hook callback of
meshap_net_dev_ops and is described in the section set radar notify hook.

13.6.24 set_probe_request_hook
This is called during meshap initialization and it registers a hook function
to process probe requests. Meshap will continue to use this function to set
the hook.

13.6.25 get_mode
This function invokes the corresponding get_mode callback of
meshap_net_dev_ops and is described in the section get mode.

13.6.26 set_mode
This function invokes the corresponding set_mode callback of
meshap_net_dev_ops and is described in the section set mode.

13.6.27 get_essid
This function invokes the corresponding get_essid callback of
meshap _net_dev_ops and is described in the section get essid.

13.6.28 set_essid
This function invokes the corresponding set_essid callback of
meshap_net_dev_ops and is described in the section set essid.

13.6.29 get _rts_threshold
This function invokes the corresponding get rts _threshold callback of
meshap _net_dev_ops and is described in the section get rts threshold.

13.6.30 set_rts_threshold
This function invokes the corresponding set_rts_threshold callback of
meshap_net_dev_ops and is described in the section set rts threshold.

13.6.31 get_frag_threshold
This function invokes the corresponding get_frag threshold callback of
meshap_net_dev_ops and is described in the section get frag threshold.

13.6.32 set_frag_threshold
This function invokes the corresponding set_frag threshold callback of
meshap_net_dev_ops and is described in the section set frag threshold.

13.6.33 get_beacon_interval
This function invokes the corresponding get beacon_interval callback of
meshap_net_dev_ops and is described in the section get beacon interval.

13.6.34 set_beacon_interval
This function invokes the corresponding set_beacon_interval callback of
meshap_net_dev_ops and is described in the section set beacon interval.

13.6.35 set_security_info
This function sets the flags ATHEROS_ INSTANCE_FLAGS WEP_ENABLE or
ATHEROS_INSTANCE_FLAGS_RSN_IE_ENABLE flag based on which security
configuration is enabled.

55]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

This information is later used by driver to setup beacons. Since beacon
frames will be handled by mac80211, meshap will stub this api.

13.6.36 set_security_key
This function invokes the corresponding set _security key callback of
meshap_net_dev_ops and is described in the section set security key.

13.6.37 release_security_key
This function invokes the corresponding release_security_key callback of
meshap_net_dev_ops and is described in the section release security key.

13.6.38 get_security key data
This function invokes the corresponding get_security_key data callback of
meshap_net_dev_ops and is described in the section get security key data.

13.6.39 set_ds_security_ key
This function invokes the corresponding set_ds_security_key of
meshap_net_dev_ops and is described in the section set ds security key.

13.6.40 get_default_capabilities

This function invokes the corresponding get default capabilities callback of
meshap_net_dev_ops and is described in the section get default capabilities.

13.6.41 get_capabilities
This function invokes the corresponding get capabilities callback of
meshap _net_dev_ops and is described in the section get capabilities.

13.6.42 get_slot_time_type
This function invokes the corresponding get _slot time type callback of
meshap _net_dev_ops and is described in the section get slot time type.

13.6.43 set_slot_time_type
This function invokes the corresponding set_slot_time_type callback of
meshap_net_dev_ops and is described in the section set slot time type.

13.6.44 get_erp_info
This function invokes the corresponding get_erp_info callback of
meshap_net_dev_ops and is described in the section get erp info.

13.6.45 set_erp_info
This function invokes the corresponding set_erp_info callback of
meshap_net_dev_ops and is described in the section set erp info.

13.6.46 set_beacon_vendor_info

This function invokes the corresponding set _beacon_vendor_info callback of
meshap _net_dev_ops and is described in the section set beacon vendor info.

13.6.47 get_ack_timeout
This function invokes the corresponding get_ack_timeout callback of
meshap_net_dev_ops and is described in the section get ack timeout.

13.6.48 set_ack_timeout
This function invokes the corresponding set_ack_timeout callback of
meshap_net_dev_ops and is described in the section set ack timeout.

56]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.6.49 get_hide_ssid
This function invokes the corresponding get_hide_ssid callback of
meshap_net_dev_ops and is described in the section get hide ssid.

13.6.50 set_hide_ssid
This function invokes the corresponding set_hide_ssid callback of
meshap_net_dev_ops and is described in the section set hide ssid.

13.6.51 enable_beaconing_uplink
This function invokes the corresponding enable beaconing uplink callback of
meshap_net_dev_ops and is described in the section enable beaconing uplink.

13.6.52 disable_beaconing_uplink
This function invokes the corresponding disable_beaconing _uplink callback of
meshap_net_dev_ops and is described in the section disable beaconing uplink.

13.6.53 get_supported_rates
This function invokes the corresponding get supported _rate callback of
meshap_net_dev_ops and is described in the section get supported rates.

13.6.54 get _bit_rate
This function invokes the corresponding get_bit_rate callback of
meshap_net_dev_ops and is described in the section get bit rate.

13.6.55 set _bit_rate
This function invokes the corresponding set_bit_rate callback of
meshap_net_dev_ops and is described in the section set bit rate.

13.6.56 get_rate_table
This function invokes the corresponding get_rate_table callback of
meshap_net_dev_ops and is described in the section get rate table.

13.6.57 get_tx_power
This function invokes the corresponding get_tx power callback of
meshap_net_dev_ops and is described in the section get tx power.

13.6.58 set_tx_power
This function invokes the corresponding set_tx power callback of
meshap_net_dev_ops and is described in the section set tx power.

13.6.59 get_channel_count
This function invokes the corresponding get _channel count callback of
meshap _net_dev_ops and is described in the section get channel count.

13.6.60 get_channel
This function invokes the corresponding get_channel callback of
meshap_net_dev_ops and is described in the section get channel.

13.6.61 set_channel
This function invokes the corresponding set_channel callback of
meshap_net_dev_ops and is described in the section set channel.

13.6.62 get_phy mode
This function invokes the corresponding get_phy mode callback of
meshap_net_dev_ops and is described in the section get phy mode.

57]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.6.63 set_phy mode
This function invokes the corresponding set_phy_mode callback of
meshap_net_dev_ops and is described in the section set phy mode.

13.6.64 get_preamble_type
This function invokes the corresponding get_preamble_type callback of
meshap_net_dev_ops and is described in the section get preamble type.

13.6.65 set_preamble_type
This function invokes the corresponding set preamble_type callback of
meshap_net_dev_ops and is described in the section set preamble type.

13.6.66 get_reg_domain_info
This function invokes the corresponding get reg domain_info callback of
meshap_net_dev_ops and is described in the section get reg domain_ info.

13.6.67 set_reg_domain_info
This function invokes the corresponding set _reg domain_info callback of
meshap_net_dev_ops and is described in the section set reg domain_info.

13.6.68 get_supported_channels
This function invokes the corresponding get_supported_channels callback of
meshap_net_dev_ops and is described in the section get supported channels.

13.6.69 set_dotlle category_info
This function invokes the corresponding set_dotlle category_info callback of
meshap_net_dev_ops and is described in the section set dotlle category info.

13.6.70 set_tx_antenna
This function invokes the corresponding set_tx_antenna callback
meshap_net_dev_ops and is described in the section set tx antenna.

13.6.71 set_auth_hook
This is called during meshap initialization and it registers a hook function
to process auth frames. Meshap will continue to use this function to set the
hook.

13.6.72 set_assoc_hook
This is called during meshap initialization and it registers a hook function
to process association frames. Meshap will continue to use this function to
set the hook.

13.6.73 set_essid_info
This function invokes the corresponding set_essid callback of
meshap_net_dev_ops and is described in the section set essid info.

13.6.74 set_radio_data
This function invokes the corresponding set_radio_data callback of
meshap_net_dev_ops and is described in the section set radio data.

13.6.75 radio_diagnostic_command
This function invokes the corresponding radio_diagnostic_command callback of
meshap_net_dev_ops and is described in the section radio diagnostic command.

13.6.76 set_action_hook
This function invokes the corresponding set_action_hook callback of
meshap_net_dev_ops and is described in the section set action hook.

58]© MeshDynamics 2002-2018. All Rights Reserved.

mesh

13.6.77 send_action
This function invokes the corresponding send_action callback of
meshap_net_dev_ops and is described in the section send action.

Date Change Author Approved By
Versio Log
n
0.1 02/28/14 Base
Draft

59]© MeshDynamics 2002-2018. All Rights Reserved.

